Немного сложно, поскольку не было предоставлено образцов данных ... так что ... я использовал свои собственные (см. Ниже)
пример даты простоя
# id from to
# 1: 1 2018-01-02 14:51:30 2018-01-02 19:55:44
# 2: 2 2018-01-05 16:00:30 2018-01-07 10:08:39
первый результат
library( lubridate )
library( data.table )
library( ggplot2 )
#table with downtimes
df.down <- data.frame( id = c(1,2),
from = c( as.POSIXct( "2018-01-02 14:51:30", format = "%Y-%m-%d %H:%M:%S"),as.POSIXct( "2018-01-05 16:00:30", format = "%Y-%m-%d %H:%M:%S") ),
to = c( as.POSIXct( "2018-01-02 19:55:44", format = "%Y-%m-%d %H:%M:%S"),as.POSIXct( "2018-01-07 10:08:39", format = "%Y-%m-%d %H:%M:%S") ),
stringsAsFactors = FALSE )
# id from to
# 1: 1 2018-01-02 14:51:30 2018-01-02 19:55:44
# 2: 2 2018-01-05 16:00:30 2018-01-07 10:08:39
#create a sequence of minutes
df.min <- data.frame( from = seq( from = as.POSIXct( "2018-01-01"), to = as.POSIXct("2018-01-8"), by = "1 min" ),
stringsAsFactors = FASLE ) %>%
mutate( to = lead( from ) ) %>%
#remove the last row
filter( !row_number() == n())
# from to
# 1: 2018-01-01 00:00:00 2018-01-01 00:01:00
# 2: 2018-01-01 00:01:00 2018-01-01 00:02:00
# 3: 2018-01-01 00:02:00 2018-01-01 00:03:00
# 4: 2018-01-01 00:03:00 2018-01-01 00:04:00
# 5: 2018-01-01 00:04:00 2018-01-01 00:05:00
# ---
# 43196: 2018-01-30 23:55:00 2018-01-30 23:56:00
# 43197: 2018-01-30 23:56:00 2018-01-30 23:57:00
# 43198: 2018-01-30 23:57:00 2018-01-30 23:58:00
# 43199: 2018-01-30 23:58:00 2018-01-30 23:59:00
# 43200: 2018-01-30 23:59:00 2018-01-31 00:00:00
#set as data.tables
setDT(df.min)
setDT(df.down)
#set keys for overlap join
setkey(df.down, from, to)
#overlap join
dt <- foverlaps(df.min, df.down, type = "within", mult = "first", nomatch = NA)
#add variables
dt[, i.from := lubridate::force_tz(dt$i.from, tzone = "UTC")]
dt[, date := as.character( as.Date( i.from ))]
dt[, hour := lubridate::hour( i.from )]
dt[!is.na(id), percentage_down := 100/60 ]
#calculate result
result <- dt[, sum( percentage_down, na.rm = TRUE ), by = list( date, hour)][]
# > result[ V1 >0 ]
# date hour V1
# 1: 2018-01-02 14 13.33333
# 2: 2018-01-02 15 100.00000
# 3: 2018-01-02 16 100.00000
# 4: 2018-01-02 17 100.00000
# 5: 2018-01-02 18 100.00000
# 6: 2018-01-02 19 91.66667
# 7: 2018-01-05 16 98.33333
# 8: 2018-01-05 17 100.00000
# 9: 2018-01-05 18 100.00000
# 10: 2018-01-05 19 100.00000
#prepare for plot
result[, timestamp := as.POSIXct( paste0( date, " ", hour ), format = "%Y-%m-%d %H", tz = "UTC") ]
#plot
ggplot( result, aes( x = timestamp, y = V1 ) ) + geom_bar( stat = "identity", fill = "lightblue", color = "black")