Я новичок в области многопоточного программирования на C ++ и пытаюсь использовать многопоточность для параллельного вычисления среднего и стандартного отклонения моих данных, чтобы сократить затраты времени. Моя функция расчета среднего и стандартного отклонения заключается в следующем.
void cal_mean_std(float* data, float* mean, float* sd, int N, int start_index, int span_cols)
{
int value;
for(int j = start_index; j < start_index + span_cols; j++){
mean[j] = 0;
sd[j] = 0;
for (int i = 0; i < N; i++) {
value = data[j * N + i];
mean[j] += value;
sd[j] += value * value;
}
mean[j] = mean[j] / N;
sd[j] = sqrt(sd[j] / N - mean[j] * mean[j]);
}
}
Я указываю начальный индекс и интервалы расчета для каждого потока и активирую свой thread_pool следующим образом.
x.mean = new float[x.M];
x.sd = new float[x.M];
std::vector<std::thread> thread_pool;
int h = 4;
thread_pool.reserve(h);
int SNIPs = static_cast<int>(x.M / h + 1);
int SNIPs_final = x.M - (h - 1) * SNIPs;
for (int i = 0; i < h - 1; i++)
{
thread_pool.push_back(std::thread(std::bind(cal_mean_std, x.data, x.mean, x.sd,
x.N, i*SNIPs, SNIPs)));
}
thread_pool.push_back(std::thread(std::bind(cal_mean_std, x.data, x.mean, x.sd,
x.N, (h-1)*SNIPs, SNIPs_final)));
for (int i = 0; i < h; i++)
thread_pool.at(i).join();
, где x.M
- общее количество столбцов в моих данных. Однако я обнаружил, что реализация таким способом не повысила эффективность программы. Я не уверен, в чем проблема.
На самом деле, мы можем смоделировать данные для выполнения вычислений. Мой размер данных 5k x 300k. Последовательный расчет с использованием цикла for для всех данных в одном потоке занимает 15 секунд. Моя многопоточная версия иногда занимает 16 секунд.
Код симуляции следующий, и я обнаружил, что когда я использую h = 1, программе требуется 6 секунд, чтобы закончить. Однако, когда я использую h = 4, программе требуется 14 секунд, чтобы закончить.
#include <thread>
#include <vector>
#include <stdlib.h>
#include <vector>
#include <stdio.h>
#include <iostream>
#include <math.h>
void gen_matrix(int N, int P, float* data){
for (int i = 0; i < N * P; i++)
{
data[i] = rand() % 10;
}
}
void cal_mean_std(float* data, float* mean, float* sd, int N, int start_index, int span_cols)
{
int value;
for(int j = start_index; j < start_index + span_cols; j++){
mean[j] = 0;
sd[j] = 0;
for (int i = 0; i < N; i++) {
value = data[j * N + i];
mean[j] += value;
sd[j] += value * value;
}
mean[j] = mean[j] / N;
sd[j] = sqrt(sd[j] / N - mean[j] * mean[j]);
}
}
int main()
{
int N = 5000;
int P = 300000;
float* data = new float[N*P];
gen_matrix(N, P, data);
float* mean = new float[P];
float* std = new float[P];
std::vector<std::thread> thread_pool;
clock_t t1;
t1 = clock();
int h = 1;
thread_pool.reserve(h);
int SNIPs = static_cast<int>(P / h + 1);
int SNIPs_final = P - (h - 1) * SNIPs;
for (int i = 0; i < h - 1; i++)
{
thread_pool.push_back(std::thread(std::bind(cal_mean_std, data, mean, std,
N, i*SNIPs, SNIPs)));
}
thread_pool.push_back(std::thread(std::bind(cal_mean_std, data, mean, std,
N, (h-1)*SNIPs, SNIPs_final)));
for (int i = 0; i < h; i++)
thread_pool.at(i).join();
std::cout <<"Time for the cal mean and std is " << (clock() - t1) * 1.0/CLOCKS_PER_SEC << std::endl;
return 0;
}