Мне было дано задание реализовать сверточную нейронную сеть, которая может оценивать рукописные цифры, найденные в наборе данных MNIST , при этом архитектура сети выглядит следующим образом:
Я реализовал CNN, который соответствует архитектуре, но, к сожалению, точность его составляет всего около 10%. Я посмотрел онлайн и попробовал другие примеры CNN, чтобы убедиться, что что-то еще вызывает проблему, однако они, кажется, работают нормально и дают мне точность ~ 99%. Я поместил обе CNN в свой код и сделал логическое переключение, чтобы показать разницу между ними:
import tensorflow
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
batch_size = 128
num_classes = 10
epochs = 1
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes)
y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes)
exampleModel = False # Use to toggle which CNN goes into the model
if exampleModel: # An example CNN that I found for MNIST
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
else: # The CNN I created
input_layer = tensorflow.keras.layers.Input(shape=input_shape)
conv1 = Conv2D(32, (1, 1), activation='relu')(input_layer)
pool1 = MaxPooling2D(2, 2)(conv1)
conv2_1 = Conv2D(64, (1, 1), activation='relu', padding='same')(pool1)
pool2_1 = MaxPooling2D(2, 2)(conv2_1)
drop2_1 = Dropout(0.5)(pool2_1)
conv2_2 = Conv2D(64, (1, 1), activation='relu', padding='same')(pool1)
pool2_2 = MaxPooling2D(2, 2)(conv2_2)
drop2_2 = Dropout(0.5)(pool2_2)
conv3_1 = Conv2D(256, (1, 1), activation='relu', padding='same')(drop2_1)
conv3_2 = Conv2D(256, (1, 1), activation='relu', padding='same')(drop2_2)
merged = tensorflow.keras.layers.concatenate([conv3_1, conv3_2], axis=-1)
merged = Dropout(0.5)(merged)
merged = Flatten()(merged)
fc1 = Dense(1000, activation='relu')(merged)
fc2 = Dense(500, activation='relu')(fc1)
out = Dense(10)(fc2)
model = tensorflow.keras.models.Model(input_layer, out)
model.compile(loss=tensorflow.keras.losses.categorical_crossentropy,
optimizer=tensorflow.keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Чтобы выполнить свою задачу, я считаю, что мне нужно преобразовать мой пример CNN по частям в требуемую архитектуру. Хотя я понятия не имею, как это сделать, они выглядят совершенно не похожими друг на друга (один чисто последовательный, другой использует параллельные слои и объединение). Я новичок в машинном обучении, поэтому, может быть, мне чего-то не хватает, хотя я не могу найти и онлайн-ресурс, который идет в этот процесс конверсии. Любая помощь с этим приветствуется.