Я хочу предсказать давление машины. У меня 18 входных значений и давление на выходе. Итак, у меня есть 19 столбцов и 7657 строк, поскольку база данных состоит из 7657 временных шагов, и каждый считает по 1 секунде.
У меня проблема со следующим кодом:
import tensorflow as tf
import pandas as pd
from matplotlib import pyplot
from sklearn.preprocessing import MinMaxScaler
from sklearn import linear_model
from keras.models import Sequential
from keras.layers import Dense #Standard neural network layer
from keras.layers import LSTM
from keras.layers import Activation
from keras.layers import Dropout
df = pd.read_csv('Testdaten_2_Test.csv',delimiter=';')
feature_col_names=['LSDI','LZT1I', ..... ,'LZT5I']
predicted_class_names = ['LMDI']
x = df[feature_col_names].values
y = df[predicted_class_names].values
x_train_size = 6400
x_train, x_test = x[0:x_train_size], x[x_train_size:len(x)]
y_train_size = 6400
y_train, y_test = y[0:y_train_size], y[y_train_size:len(y)]
nb_model = linear_model.LinearRegression()
nb_model.fit(X=x_train, y=y_train)
nb_predict_train = nb_model.predict(x_test)
from sklearn import metrics
def scale(x, y):
# fit scaler
x_scaler = MinMaxScaler(feature_range=(-1, 1))
x_scaler = x_scaler.fit(x)
x_scaled = x_scaler.transform(x)
# fit scaler
y_scaler = MinMaxScaler(feature_range=(-1, 1))
y_scaler = y_scaler.fit(y)
y_scaled = y_scaler.transform(y)
return x_scaler, y_scaler, x_scaled, y_scaled
x_scaler, y_scaler, x_scaled, y_scaled = scale(x, y)
x_train, x_test = x_scaled[0:x_train_size], x_scaled[x_train_size:len(x)]
y_train, y_test = y_scaled[0:y_train_size], y_scaled[y_train_size:len(y)]
x_train=x_train.reshape(x_train_size,1,18)
y_train=y_train.reshape(y_train_size,1,1)
model = Sequential()
model.add(LSTM(10, return_sequences=True,batch_input_shape=(32,1,18)))
model.add(LSTM(10,return_sequences=True))
model.add(LSTM(1,return_sequences=True, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=
['accuracy'])
model.fit(x_train, y_train, epochs=10,batch_size=32)
score = model.evaluate(x_test, y_test,batch_size=32)
predicted = model.predict(x_test)
predicted = y_scaler.inverse_transform(predicted)
predicted = [x if x > 0 else 0 for x in predicted]
correct_values = y_scaler.inverse_transform(y_test)
correct_values = [x if x > 0 else 0 for x in correct_values]
print(nb_predict_train)
Я получаю сообщение об ошибке:
ValueError: Ошибка при проверке ввода: ожидается, что lstm_1_input будет иметь 3
размеры, но получили массив с формой (1257, 18)
После последней строки кода.
Я также попытался изменить форму тестовых данных, но затем я получил очень похожую ошибку.
Я думаю, мне не хватает чего-то очень простого или базового, но я не могу понять это в данный момент, так как я только начинающий в кодировании нейронных сетей.
Мне нужно это для моей магистерской диссертации, поэтому я был бы очень благодарен, если бы кто-нибудь мог мне помочь.