Распределитель по умолчанию - std::allocator
, и он просто использует ::operator new
, как и когда требуется, поэтому ничего особенного.Это более или менее то же самое, что делать new
и delete
самостоятельно для каждого необходимого объекта.Вы можете прочитать больше об этом в разделе [default.allocator]
в стандарте.
«Интерфейс» распределителя (на самом деле просто набор требований, применяемый при создании экземпляра шаблона) - это оболочка для этого процесса, позволяющая использовать альтернативные подходы к выделению памяти.чтобы быть занятым.
Например, альтернативные распределители, которые вы можете предоставить, могут реализовать пул памяти или что-то еще, что соответствует вашим потребностям, сокращая динамическое распределение честности.
Стандартные контейнеры, а также тип их элементов имеют тип распределителя в качестве аргумента шаблона (вы обычно этого не замечаете!), И именно так вы выбираете альтернативные реализации для использования с этим контейнером.
В этих случаях вы, как правило, будете предварительно выделять какой-то большой кусок памяти, а затем распределять маленькие куски по мере необходимости.В этом смысле такую реализацию можно считать своего рода «кучей в куче», но на самом деле нет причин, по которым вам вообще нужно указывать семантику кучи.Нужно только соблюдать требования концепции Распределитель .
Мистер Джосуттис привел (скучный) пример в http://www.josuttis.com/cppcode/allocator.html; Я воспроизводлюэто здесь:
/* The following code example is taken from the book
* "The C++ Standard Library - A Tutorial and Reference"
* by Nicolai M. Josuttis, Addison-Wesley, 1999
*
* (C) Copyright Nicolai M. Josuttis 1999.
* Permission to copy, use, modify, sell and distribute this software
* is granted provided this copyright notice appears in all copies.
* This software is provided "as is" without express or implied
* warranty, and with no claim as to its suitability for any purpose.
*/
#include <limits>
#include <iostream>
namespace MyLib {
template <class T>
class MyAlloc {
public:
// type definitions
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// rebind allocator to type U
template <class U>
struct rebind {
typedef MyAlloc<U> other;
};
// return address of values
pointer address (reference value) const {
return &value;
}
const_pointer address (const_reference value) const {
return &value;
}
/* constructors and destructor
* - nothing to do because the allocator has no state
*/
MyAlloc() throw() {
}
MyAlloc(const MyAlloc&) throw() {
}
template <class U>
MyAlloc (const MyAlloc<U>&) throw() {
}
~MyAlloc() throw() {
}
// return maximum number of elements that can be allocated
size_type max_size () const throw() {
return std::numeric_limits<std::size_t>::max() / sizeof(T);
}
// allocate but don't initialize num elements of type T
pointer allocate (size_type num, const void* = 0) {
// print message and allocate memory with global new
std::cerr << "allocate " << num << " element(s)"
<< " of size " << sizeof(T) << std::endl;
pointer ret = (pointer)(::operator new(num*sizeof(T)));
std::cerr << " allocated at: " << (void*)ret << std::endl;
return ret;
}
// initialize elements of allocated storage p with value value
void construct (pointer p, const T& value) {
// initialize memory with placement new
new((void*)p)T(value);
}
// destroy elements of initialized storage p
void destroy (pointer p) {
// destroy objects by calling their destructor
p->~T();
}
// deallocate storage p of deleted elements
void deallocate (pointer p, size_type num) {
// print message and deallocate memory with global delete
std::cerr << "deallocate " << num << " element(s)"
<< " of size " << sizeof(T)
<< " at: " << (void*)p << std::endl;
::operator delete((void*)p);
}
};
// return that all specializations of this allocator are interchangeable
template <class T1, class T2>
bool operator== (const MyAlloc<T1>&,
const MyAlloc<T2>&) throw() {
return true;
}
template <class T1, class T2>
bool operator!= (const MyAlloc<T1>&,
const MyAlloc<T2>&) throw() {
return false;
}
}
И использование:
#include <vector>
#include "myalloc.hpp"
int main()
{
// create a vector, using MyAlloc<> as allocator
std::vector<int,MyLib::MyAlloc<int> > v;
// insert elements
// - causes reallocations
v.push_back(42);
v.push_back(56);
v.push_back(11);
v.push_back(22);
v.push_back(33);
v.push_back(44);
}