Итак, я пытался узнать о распределенном обучении по тензорному потоку. Чтобы практиковать себя, я пробовал код из https://github.com/hn826/distributed-tensorflow/blob/master/distributed-deep-mnist.py
import argparse
import sys
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
def deepnn(x):
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Assigns ops to the local worker by default.
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# Build Deep MNIST model...
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
y_conv, keep_prob = deepnn(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
global_step = tf.contrib.framework.get_or_create_global_step()
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy, global_step=global_step)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# The StopAtStepHook handles stopping after running given steps.
hooks=[tf.train.StopAtStepHook(last_step=1000)]
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir=FLAGS.log_dir,
hooks=hooks) as mon_sess:
i = 0
while not mon_sess.should_stop():
# Run a training step asynchronously.
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = mon_sess.run(accuracy, feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print('global_step %s, task:%d_step %d, training accuracy %g'
% (tf.train.global_step(mon_sess, global_step), FLAGS.task_index, i, train_accuracy))
mon_sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
i = i + 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
# Flags for defining the tf.train.ClusterSpec
parser.add_argument(
"--ps_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs"
)
parser.add_argument(
"--worker_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs"
)
parser.add_argument(
"--job_name",
type=str,
default="",
help="One of 'ps', 'worker'"
)
# Flags for defining the tf.train.Server
parser.add_argument(
"--task_index",
type=int,
default=0,
help="Index of task within the job"
)
# Flags for specifying input/output directories
parser.add_argument(
"--data_dir",
type=str,
default="/tmp/mnist_data",
help="Directory for storing input data")
parser.add_argument(
"--log_dir",
type=str,
default="/tmp/train_logs",
help="Directory for train logs")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
Я понял большинство вещей, кроме некоторых понятий.
Во-первых, около FLAGS
. Насколько я понял, в нем определены задачи и рабочие. Но я запутался как.
Во-вторых, о парсерах. Каковы они и почему мы используем их здесь? Я понял, что выполнение parser.add_argument()
дает вам варианты при запуске кода в терминале.
Я думаю, parser
и FLAGS
как-то связаны. Так что, зная, что они делают, вероятно, отбросит все вопросительные знаки в моей голове.