Я пытаюсь выполнить моделирование по методу Монте-Карло, чтобы вычислить неопределенность в затратах на электроэнергию для системы с тепловым насосом.У меня есть несколько входных параметров (COP, затраты на электроэнергию), которые имеют треугольное распределение вероятностей.Общие затраты на электроэнергию состоят из суммы рассчитанных затрат трех подкомпонентов (тепловых насосов и насосов) и имеют (приблизительно) нормальное распределение вероятностей.
Мне было интересно, правильно ли я выполняю симуляцию MC,Поскольку мне приходится зацикливать эту симуляцию MC на более чем 70 различных системах тепловых насосов, мне также интересно, есть ли более быстрый метод.
Поскольку я абсолютный приверженец кодирования, прошу прощения за мой грязный код.
Я благодарен за любую помощь!
Мой код:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import triangular
N = 1_000_000
def energy_output(coef_performance, energy_input):
return energy_input * coef_performance / (coef_performance - 1)
COP_DISTRIBUTION_PARAM = dict(left=4, mode=4.5, right=5)
def seed_cop():
return triangular(**COP_DISTRIBUTION_PARAM )
INPUT_ENERGY_HEATING = 866
INPUT_ENERGY_COOLING = 912
def random_energy_output():
return energy_output(seed_cop(), energy_input=INPUT_ENERGY_HEATING)
energy_outputs = [random_energy_output() for _ in range(N)]
a = min(energy_outputs)
b = max(energy_outputs)
med = np.median(energy_outputs)
############################
def elec_costs_heatpump(elec_costs, coef_performance,energy_output):
return energy_output * 1000 / coef_performance * elec_costs
ELEC_DISTRIBUTION_PARAM = dict(left=0.14, mode=0.15, right=0.16)
def seed_elec():
return triangular(**ELEC_DISTRIBUTION_PARAM )
HP_OUTPUT_DISTRIBUTION_PARAM = dict(left=a, mode=med, right=b)
def seed_output():
return triangular(**HP_OUTPUT_DISTRIBUTION_PARAM )
def random_elec_costs_heatpump():
return elec_costs_heatpump(seed_elec(),seed_cop(),seed_output() )
elec_costs_heatpump = [random_elec_costs_heatpump() for _ in range(N)]
mean_hp = np.mean(elec_costs_heatpump)
std_hp = np.std(elec_costs_heatpump)
############################
def elec_costs_coldpump(elec_costs, coef_performance_pump,energy_input):
return energy_input * 1000 / coef_performance_pump * elec_costs
COP_PUMP_DISTRIBUTION_PARAM = dict(left=35, mode=40, right=45)
def seed_cop_pump():
return triangular(**COP_PUMP_DISTRIBUTION_PARAM )
def random_elec_costs_coldpump():
return elec_costs_coldpump(seed_elec(),seed_cop_pump(), energy_input=INPUT_ENERGY_COOLING)
elec_costs_coldpump = [random_elec_costs_coldpump() for _ in range(N)]
mean_cp = np.mean(elec_costs_coldpump)
sdt_cp = np.std(elec_costs_coldpump)
#########################
def elec_costs_warmpump(elec_costs, coef_performance_pump,energy_input):
return energy_input * 1000 / coef_performance_pump * elec_costs
def random_elec_costs_warmpump():
return elec_costs_warmpump(seed_elec(),seed_cop_pump(), energy_input=INPUT_ENERGY_HEATING)
elec_costs_warmpump = [random_elec_costs_warmpump() for _ in range(N)]
mean_wp = np.mean(elec_costs_warmpump)
sdt_wp = np.std(elec_costs_warmpump)
#########################
def total_costs(costs_heatpump, costs_coldpump, costs_warmpump):
return costs_heatpump + costs_coldpump + costs_warmpump
ELEC_COSTS_HEATPUMP_PARAM = dict(loc=mean_hp, scale=sdt_hp)
def seed_costs_hp():
return np.random.normal(**ELEC_COSTS_HEATPUMP_PARAM )
ELEC_COSTS_COLDPUMP_PARAM = dict(loc=mean_cp, scale=sdt_cp)
def seed_costs_cp():
return np.random.normal(**ELEC_COSTS_COLDPUMP_PARAM )
ELEC_COSTS_WARMPUMP_PARAM = dict(loc=mean_wp,scale=sdt_wp)
def seed_cost_wp():
return np.random.normal(**ELEC_COSTS_WARMPUMP_PARAM )
def random_total_costs():
return seed_costs_hp(), seed_costs_cp(), seed_cost_wp()
total_costs = [random_total_costs() for _ in range(N)]
print(total_costs)
#Plot = plt.hist(total_costs, bins=75, density=True)