Я хочу знать, есть ли у операций с тензорным потоком в этой ссылке определенный градиент.Я спрашиваю, потому что я реализую пользовательскую функцию потерь, и когда я ее запускаю, у меня всегда появляется эта ошибка:
ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
Это моя пользовательская функция потерь:
def calculate_additional_loss(y_true,y_pred):
#additional loss
x_decoded_normalized = original_dim* y_pred
#y_true = K.print_tensor(y_true, message='y_true = ')
#y_pred = K.print_tensor(y_pred, message='y_pred = ')
error = tf.constant(0, dtype= tf.float32)
additional_loss= tf.constant(0, dtype= tf.float32)
final_loss= tf.constant(0, dtype= tf.float32)
for k in range(batch_size):
#add padding
reshaped_elem_1 = K.reshape(x_decoded_normalized[k], [DIM,DIM])
a = K.reshape(reshaped_elem_1[:,DIM-1], [DIM,1])
b = K.reshape(reshaped_elem_1[:,1], [DIM,1])
reshaped_elem_1 = tf.concat ([b,reshaped_elem_1], axis= 1)
reshaped_elem_1 = tf.concat ([reshaped_elem_1,a], axis= 1)
c= K.reshape(reshaped_elem_1[DIM-1,:], [1,DIM+2])
d= K.reshape(reshaped_elem_1[1,:], [1,DIM+2])
reshaped_elem_1 = tf.concat ([d,reshaped_elem_1],axis=0)
reshaped_elem_1 = tf.concat ([reshaped_elem_1,c],axis=0)
for (i,j) in range(reshaped_elem_1.shape[0],reshaped_elem_1.shape[1]):
error = tf.add(error, tf.pow((reshaped_elem_1[i,j]-
reshaped_elem_1[i,j+1]),-2),
tf.pow((reshaped_elem_1[i,j]-reshaped_elem_1[i,j-
1]),-2), tf.pow((reshaped_elem_1[i,j]-
reshaped_elem_1[i-1,j]),-2),
tf.pow((reshaped_elem_1[i,j]-reshaped_elem_1[i+1,j]),-2))
additional_loss = tf.add(additional_loss, tf.divide(error, original_dim))
final_loss += tf.divide(additional_loss, batch_size)
print('final_loss', final_loss)
return final_loss
, и этогде я это называю:
models = (encoder, decoder)
additional_loss = calculate_additional_loss(inputs,outputs)
vae.add_loss(additional_loss)
vae.compile(optimizer='adam')
vae.summary()
plot_model(vae,to_file='vae_mlp.png',show_shapes=True)
vae.fit(x_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, None), verbose = 1, callbacks=[CustomMetrics()])
Заранее спасибо.