выбрать не пропущенные переменные в цикле purrr - PullRequest
0 голосов
/ 10 сентября 2018

Рассмотрим этот пример

mydata <- data_frame(ind_1 = c(NA,NA,3,4),
                     ind_2 = c(2,3,4,5),
                     ind_3 = c(5,6,NA,NA),
                     y = c(28,34,25,12),
                     group = c('a','a','b','b'))

> mydata
# A tibble: 4 x 5
  ind_1 ind_2 ind_3     y group
  <dbl> <dbl> <dbl> <dbl> <chr>
1    NA     2     5    28 a    
2    NA     3     6    34 a    
3     3     4    NA    25 b    
4     4     5    NA    12 b 

Здесь я хочу для каждой group регрессии y на любую переменную, не пропущенную в этой группе, и сохранить соответствующий объект lm в list-column.

То есть:

  • для группы a, эти переменные соответствуют ind_2 и ind_3
  • для группы b, они соответствуют ind_1 и ind_2

Я попробовал следующее, но это не работает

mydata %>% group_by(group) %>% nest() %>% 
  do(filtered_df <- . %>% select(which(colMeans(is.na(.)) == 0)),
     myreg = lm(y~ names(filtered_df)))

Есть идеи? Спасибо!

Ответы [ 2 ]

0 голосов
/ 11 сентября 2018

Вот еще одна опция tidyverse, присвойте mydata$model, если вы хотите сохранить ее в своем tibble:

library(tidyverse)
mydata %>%
  nest(-group) %>%
  pull(data) %>%
  map(~lm(y ~., discard(.,anyNA)))
# [[1]]
# 
# Call:
# lm(formula = y ~ ., data = discard(., anyNA))
# 
# Coefficients:
# (Intercept)        ind_2        ind_3  
#          16            6           NA  
# 
# 
# [[2]]
# 
# Call:
# lm(formula = y ~ ., data = discard(., anyNA))
# 
# Coefficients:
# (Intercept)        ind_1        ind_2  
#          64          -13           NA  
# 
# 
0 голосов
/ 10 сентября 2018

Мы можем использовать map и mutate. Мы можем либо select и моделировать за один шаг (nestdat1) или отдельными шагами, используя два map, если вы хотите сохранить отфильтрованные данные (nestdat2):

library(tidyverse)

nestdat1 <- mydata %>%
  group_by(group) %>%
  nest() %>%
  mutate(model = data %>% map(~ select_if(., funs(!any(is.na(.)))) %>%
                                lm(y ~ ., data = .)))

nestdat2 <- mydata %>%
  group_by(group) %>%
  nest() %>%
  mutate(data = data %>% map(~ select_if(., funs(!any(is.na(.))))),
         model = data %>% map(~ lm(y ~ ., data = .)))

Выход:

Они производят различные столбцы data:

> nestdat1 %>% pull(data)
[[1]]
# A tibble: 2 x 4
  ind_1 ind_2 ind_3     y
  <dbl> <dbl> <dbl> <dbl>
1    NA     2     5    28
2    NA     3     6    34

[[2]]
# A tibble: 2 x 4
  ind_1 ind_2 ind_3     y
  <dbl> <dbl> <dbl> <dbl>
1     3     4    NA    25
2     4     5    NA    12

> nestdat2 %>% pull(data)
[[1]]
# A tibble: 2 x 3
  ind_2 ind_3     y
  <dbl> <dbl> <dbl>
1     2     5    28
2     3     6    34

[[2]]
# A tibble: 2 x 3
  ind_1 ind_2     y
  <dbl> <dbl> <dbl>
1     3     4    25
2     4     5    12

Но тот же столбец model:

> nestdat1 %>% pull(model)
[[1]]

Call:
lm(formula = y ~ ., data = .)

Coefficients:
(Intercept)        ind_2        ind_3  
         16            6           NA  

[[2]]

Call:
lm(formula = y ~ ., data = .)

Coefficients:
(Intercept)        ind_1        ind_2  
         64          -13           NA  


> nestdat2 %>% pull(model)
[[1]]

Call:
lm(formula = y ~ ., data = .)

Coefficients:
(Intercept)        ind_2        ind_3  
         16            6           NA  

[[2]]

Call:
lm(formula = y ~ ., data = .)

Coefficients:
(Intercept)        ind_1        ind_2  
         64          -13           NA 
...