Я строю простую нейронную сеть на Python, используя Tensorflow и Keras. Мне нужно реализовать этот код для работы на GPU, используя PyCuda. Я планирую распараллелить изучение всех эпох, однако, поскольку Керас очень минималистичен, все эпохальные тренировки (по крайней мере, из моего понимания) выполняются одной строкой:
model.fit (train_images, train_labels, epochs = 100)
Как можно «извлечь» из этой функции что-то, что можно передать функции ядра PyCuda? Это мой код до сих пор:
#TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
#Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import cv2
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=100)