Каков исходный код для функции Keras model.fit ()? - PullRequest
0 голосов
/ 19 января 2019

Я строю простую нейронную сеть на Python, используя Tensorflow и Keras. Мне нужно реализовать этот код для работы на GPU, используя PyCuda. Я планирую распараллелить изучение всех эпох, однако, поскольку Керас очень минималистичен, все эпохальные тренировки (по крайней мере, из моего понимания) выполняются одной строкой:

model.fit (train_images, train_labels, epochs = 100)

Как можно «извлечь» из этой функции что-то, что можно передать функции ядра PyCuda? Это мой код до сих пор:

#TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

#Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import cv2

print(tf.__version__)

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()

train_images = train_images / 255.0
test_images = test_images / 255.0

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])

plt.show()

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(optimizer=tf.train.AdamOptimizer(),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=100)
...