Я пытаюсь обновить значение в кадре данных, используя метод и forloop. Я передаю фрейм данных в метод и использую цикл for для вычисления значения, которое я хочу поместить в последний столбец.
Вот метод
def vwap2(df):
sumTpv = 0.00
sumVolume = 0
dayVwap = 0.00
for i, row in df.iterrows():
#Get all values from each row
#Find typical price
tp = (row['HIGH'] + row['LOW'] + row['CLOSE'] + row['OPEN']) / 4
tpv = tp * row['VOLUME']
sumTpv= sumTpv + tpv
sumVolume = sumVolume + row['VOLUME']
vwap = sumTpv / sumVolume
#Find VWAP
#df.assign(VWAP = vwap)
#row.assign(VWAP = vwap)
#row["VWAP"] = vwap
df.set_value(row, 'VWAP', vwap)
df = df.reindex(row = row)
df[row] = df[row].astype(float)
dayVwap = dayVwap + vwap
print('Day VWAP = ', dayVwap)
print('TPV sum = ', sumTpv)
print('Day Volume = ', sumVolume)
return df
И в Dataframe уже есть столбец, так как я добавляю его перед тем, как передать df в метод. Как это
df["VWAP"] = ""
#do vwap calculation
df = vwap2(df)
Но значения либо все одинаковые, чего не должно быть, либо не записываются. Я попробовал несколько вещей, но безуспешно.
Любая помощь будет оценена
Спасибо
ОБНОВЛЕНИЕ
Вот данные, которые я использую,
Я каждый раз вытаскиваю его из гугла
CLOSE HIGH LOW OPEN VOLUME TP \
2018-05-10 22:30:00 97.3600 97.48 97.3000 97.460 371766 97.86375
1525991460000000000 97.2900 97.38 97.1800 97.350 116164 97.86375
1525991520000000000 97.3100 97.38 97.2700 97.270 68937 97.86375
1525991580000000000 97.3799 97.40 97.3101 97.330 46729 97.86375
1525991640000000000 97.2200 97.39 97.2200 97.365 64823 97.86375
TPV SumTPV SumVol VWAP
2018-05-10 22:30:00 3.722224e+08 1.785290e+09 18291710 97.601027
1525991460000000000 3.722224e+08 1.785290e+09 18291710 97.601027
1525991520000000000 3.722224e+08 1.785290e+09 18291710 97.601027
1525991580000000000 3.722224e+08 1.785290e+09 18291710 97.601027
1525991640000000000 3.722224e+08 1.785290e+09 18291710 97.601027
Как видите, все рассчитанные вещи одинаковы.
Вот что я сейчас использую.
def vwap2(df):
sumTpv = 0.00
sumVolume = 0
dayVwap = 0.00
for i, row in df.iterrows():
#Get all values from each row
#Find typical price
tp = (row['HIGH'] + row['LOW'] + row['CLOSE'] + row['OPEN']) / 4
df['TP'] = tp
tpv = tp * row['VOLUME']
df['TPV'] = tpv
sumTpv= sumTpv + tpv
df['SumTPV'] = sumTpv
sumVolume = sumVolume + row['VOLUME']
df['SumVol'] = sumVolume
vwap = sumTpv / sumVolume
#Find VWAP
#row.assign(VWAP = vwap)
#row["VWAP"] = vwap
#df.set_value(row, 'VWAP', vwap)
df["VWAP"] = vwap
dayVwap = dayVwap + vwap
print('Day VWAP = ', dayVwap)
print('TPV sum = ', sumTpv)
print('Day Volume = ', sumVolume)
return df