Здесь x_dat
и y_dat
- это просто очень длинные одномерные тензоры.
class FunctionDataset(Dataset):
def __init__(self):
x_dat, y_dat = data_product()
self.length = len(x_dat)
self.y_dat = y_dat
self.x_dat = x_dat
def __getitem__(self, index):
sample = self.x_dat[index]
label = self.y_dat[index]
return sample, label
def __len__(self):
return self.length
...
data_set = FunctionDataset()
...
training_sampler = SubsetRandomSampler(train_indices)
validation_sampler = SubsetRandomSampler(validation_indices)
training_loader = DataLoader(data_set, sampler=training_sampler, batch_size=params['batch_size'], shuffle=False)
validation_loader = DataLoader(data_set, sampler=validation_sampler, batch_size=valid_size, shuffle=False)
Я также попытался закрепить память для двух загрузчиков. Установка num_workers
в> 0 дает мне ошибки во время выполнения между процессами (например, ошибка EOF и ошибки прерывания). Я получаю свою партию с:
x_val, target = next(iter(training_loader))
Весь набор данных поместился бы в memory / gpu, но я хотел бы эмулировать пакеты для этого эксперимента. Профилирование моего процесса дает мне следующее:
16276989 function calls (16254744 primitive calls) in 38.779 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1745/1 0.028 0.000 38.780 38.780 {built-in method builtins.exec}
1 0.052 0.052 38.780 38.780 simple aprox.py:3(<module>)
1 0.000 0.000 36.900 36.900 simple aprox.py:519(exploreHeatmap)
1 0.000 0.000 36.900 36.900 simple aprox.py:497(optFromSample)
1 0.033 0.033 36.900 36.900 simple aprox.py:274(train)
705/483 0.001 0.000 34.495 0.071 {built-in method builtins.next}
222 1.525 0.007 34.493 0.155 dataloader.py:311(__next__)
222 0.851 0.004 12.752 0.057 dataloader.py:314(<listcomp>)
3016001 11.901 0.000 11.901 0.000 simple aprox.py:176(__getitem__)
21 0.010 0.000 10.891 0.519 simple aprox.py:413(validationError)
443 1.380 0.003 9.664 0.022 sampler.py:136(__iter__)
663/221 2.209 0.003 8.652 0.039 dataloader.py:151(default_collate)
221 0.070 0.000 6.441 0.029 dataloader.py:187(<listcomp>)
442 6.369 0.014 6.369 0.014 {built-in method stack}
3060221 2.799 0.000 5.890 0.000 sampler.py:68(<genexpr>)
3060000 3.091 0.000 3.091 0.000 tensor.py:382(<lambda>)
222 0.001 0.000 1.985 0.009 sampler.py:67(__iter__)
222 1.982 0.009 1.982 0.009 {built-in method randperm}
663/221 0.002 0.000 1.901 0.009 dataloader.py:192(pin_memory_batch)
221 0.000 0.000 1.899 0.009 dataloader.py:200(<listcomp>)
....
Предполагается, что загрузчик данных очень медленный по сравнению с оставшейся частью моего эксперимента (обучение модели и множество других вычислений и т. Д.). Что идет не так и как лучше всего это ускорить?