У меня есть этот код, который используется для отслеживания того, насколько поздно были конкретные поставки, и как поздно они были. Я классифицировал их так: ранние поставки, своевременные и поздние поставки. Я могу построить график этих результатов, если я включу каждый номер материала. Однако, когда я определяю номер материала, я сталкиваюсь с ошибкой (перечисленной ниже), я также предоставляю то, что точно напечатано в терминале. Похоже, что в фрейме данных созданы две строки, помеченные разными вещами, и отсчитывается отсюда, поэтому я не могу построить график, потому что есть два значения, так как я могу исправить свой код, чтобы просто извлечь «число отсчетов» и использовать это число, чтобы график гистограммы
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
Material= 'Material'
DELIVERY_DATE = 'Delivery Date'
DESIRED_DATE = 'source desired delivery date'
DELAYED_DAYS = 'Delayed Days'
StartYear = input("Start Year? ")
StartYear = int(StartYear)
EndYear = input("End Year? ")
EndYear = int(EndYear)
DELIVERY_DATE = 'Delivery Date'
DESIRED_DATE = 'source desired delivery date'
DELAYED_DAYS = 'Delayed Days'
df = pd.read_csv('otdo.csv')
df['Delivery Date'] = pd.to_datetime(df['Delivery Date'], format='%m/%d/%Y')
df['source desired delivery date'] = pd.to_datetime(df['source desired delivery date'], format='%m/%d/%Y')
late_threshold = pd.Timedelta(days=0)
late_threshold2 = pd.Timedelta(days=10)
df[DELIVERY_DATE] = pd.to_datetime(df[DELIVERY_DATE])
df[DESIRED_DATE] = pd.to_datetime(df[DESIRED_DATE])
df[DELAYED_DAYS] = df[DELIVERY_DATE] - df[DESIRED_DATE]
df2 = df[(df['Delivery Date'].dt.year >= int(StartYear)) & (df['Delivery Date'].dt.year <= int(EndYear))]
df3 = df2[ df2[DELAYED_DAYS] > late_threshold]
df3 = df3[late_threshold2 > df3[DELAYED_DAYS]]
df3 = df3.loc[df['Material'].str.contains('20080810', na=False)]
df4 = df2[ df2[DELAYED_DAYS] > late_threshold2]
df4 = df4.loc[df['Material'].str.contains('20080810', na=False)]
df5 = df2[df2[DELAYED_DAYS] <= late_threshold]
df5 = df5.loc[df['Material'].str.contains('20080810', na=False)]
df6 = df2.loc[df['Material'].str.contains('20080810', na=False)]
df7 = df2[ df2[DELAYED_DAYS] > late_threshold]
df7 = df7[late_threshold2 > df7[DELAYED_DAYS]]
df8 = df2[ df2[DELAYED_DAYS] > late_threshold2]
df9 = df2[df2[DELAYED_DAYS] <= late_threshold]
zero = df2.count()
zero2 = df3.count()
zero3 = df4.count()
zero4 = df5.count()
zero5 = df7.count()
zero7 = df9.count()
hey = zero7.iloc[1:1]
print(hey)
print(zero7)
objects = ('1', '2', '3')
y_pos = np.arange(len(objects))
values = [zero5, zero4, zero7]
plt.bar(y_pos, values, align='center', alpha=0.2)
plt.xticks(y_pos, objects)
plt.show()
Вот что вырабатывается в терминале:
Start Year? 2014
End Year? 2018
Series([], dtype: int64)
Material 4936
Delayed Days 4936
dtype: int64
Traceback (most recent call last):
File "C:\Users\khalha\eclipse-workspace\Test3\Test3\gagada.py", line 118, in <module>
plt.bar(y_pos, values, align='center', alpha=0.2)
File "C:\Users\khalha\AppData\Local\Programs\Python\Python37\lib\site-packages\matplotlib\pyplot.py", line 2770, in bar
ret = ax.bar(*args, **kwargs)
File "C:\Users\khalha\AppData\Local\Programs\Python\Python37\lib\site-packages\matplotlib\__init__.py", line 1855, in inner
return func(ax, *args, **kwargs)
File "C:\Users\khalha\AppData\Local\Programs\Python\Python37\lib\site-packages\matplotlib\axes\_axes.py", line 2233, in bar
np.atleast_1d(x), height, width, y, linewidth)
File "C:\Users\khalha\AppData\Local\Programs\Python\Python37\lib\site-packages\numpy\lib\stride_tricks.py", line 249, in broadcast_arrays
shape = _broadcast_shape(*args)
File "C:\Users\khalha\AppData\Local\Programs\Python\Python37\lib\site-packages\numpy\lib\stride_tricks.py", line 184, in _broadcast_shape
b = np.broadcast(*args[:32])
ValueError: shape mismatch: objects cannot be broadcast to a single shape
CSV-файл:
Material Delivery Date source desired delivery date
3334678 12/31/2014 12/31/2014
233433 12/31/2014 12/31/2014
3434343 1/5/2015 1/5/2015
3334567 1/5/2015 1/6/2015
546456 2/11/2015 2/21/2015
221295 4/10/2015 4/10/2015