Воспользуйтесь свойством модульной арифметики
(a × b) modulo M == ((a module M) × (b modulo M)) modulo M
Используя указанное выше правило умножения
(a^n) modulo M
= (a × a × a × a ... × a) modulo M
= ((a module M) × (a modulo M) × (a modulo M) ... × (a modulo M)) modulo M
Рассчитать результат методом разделяй и властвуй. Отношение повторения будет:
f(x, n) = 0 if n == 0
f(x, n) = (f(x, n / 2))^2 if n is even
f(x, n) = (f(x, n / 2))^2 * x if n is odd
Вот реализация C ++:
int powerUtil(int base, int exp, int mod) {
if(exp == 0) return 1;
int ret = powerUtil(base, exp / 2, mod) % mod;
ret = 1LL * ret * ret % mod;
if(exp & 1) {
ret = 1LL * ret * base % mod;
}
return ret;
}
double power(int base, int exp, int mod) {
if(exp < 0) {
if(base == 0) return DBL_MAX; // undefined
return 1 / (double) powerUtil(base, -exp, mod);
}
return powerUtil(base, exp, mod);
}