Пример в качестве альтернативы, если вам неудобно использовать Windowing, так как в комментарии есть и лучший путь:
# Running in Databricks, not all stuff required
from pyspark.sql import Row
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql.types import *
#from pyspark.sql.functions import col
data = [("A", "X", 2, 100), ("A", "X", 7, 100), ("B", "X", 10, 100),
("C", "X", 1, 100), ("D", "X", 50, 100), ("E", "X", 30, 100)]
rdd = sc.parallelize(data)
someschema = rdd.map(lambda x: Row(c1=x[0], c2=x[1], val1=int(x[2]), val2=int(x[3])))
df = sqlContext.createDataFrame(someschema)
tot = df.count()
df.groupBy("c1") \
.count() \
.withColumnRenamed('count', 'cnt_per_group') \
.withColumn('perc_of_count_total', (F.col('cnt_per_group') / tot) * 100 ) \
.show()
возвращается:
+---+-------------+-------------------+
| c1|cnt_per_group|perc_of_count_total|
+---+-------------+-------------------+
| E| 1| 16.666666666666664|
| B| 1| 16.666666666666664|
| D| 1| 16.666666666666664|
| C| 1| 16.666666666666664|
| A| 2| 33.33333333333333|
+---+-------------+-------------------+
Я сосредотачиваюсь на Scala, и с этим, кажется, все проще. Тем не менее, предлагаемое решение с помощью комментариев использует Window, что я и сделал бы в Scala с over ().