Я получаю эту ошибку, когда выполняю это с gridsearchCV со значением выигрыша 'roc_auc' ('f1', 'precision', 'return' работает нормально)
# Construct a pipeline
pipe = Pipeline([
('reduce_dim',PCA()),
('rf',RandomForestClassifier(min_samples_leaf=5,random_state=123))
])
N_FEATURES_OPTIONS = [2] # for PCA [2, 4, 8]
# these below param is for RandomForestClassifier
N_ESTIMATORS = [10,50] # 10,50,100
MAX_DEPTH = [5,6] # 5,6,7,8,9
MIN_SAMPLE_LEAF = 5
param_grid = [
{
'reduce_dim': [PCA()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'rf__n_estimators' : N_ESTIMATORS,
'rf__max_depth': MAX_DEPTH
},
{
'reduce_dim': [SelectKBest(f_classif)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'rf__n_estimators' : N_ESTIMATORS,
'rf__max_depth': MAX_DEPTH
},
]
grid = GridSearchCV(pipe, param_grid= param_grid, cv =10,n_jobs=1,scoring = 'roc_auc')
grid.fit(X_train_s,y_train_s)
И я получаю эту ошибку
AttributeError Traceback (most recent call last)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/metrics/scorer.py in __call__(self, clf, X, y, sample_weight)
186 try:
--> 187 y_pred = clf.decision_function(X)
188
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/utils/metaestimators.py in __get__(self, obj, type)
108 else:
--> 109 getattr(delegate, self.attribute_name)
110 break
AttributeError: 'RandomForestClassifier' object has no attribute 'decision_function'
During handling of the above exception, another exception occurred:
IndexError Traceback (most recent call last)
<ipython-input-16-86491f3b6aa7> in <module>()
----> 1 grid.fit(X_train_s,y_train_s)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups, **fit_params)
637 error_score=self.error_score)
638 for parameters, (train, test) in product(candidate_params,
--> 639 cv.split(X, y, groups)))
640
641 # if one choose to see train score, "out" will contain train score info
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
777 # was dispatched. In particular this covers the edge
778 # case of Parallel used with an exhausted iterator.
--> 779 while self.dispatch_one_batch(iterator):
780 self._iterating = True
781 else:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
623 return False
624 else:
--> 625 self._dispatch(tasks)
626 return True
627
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
586 dispatch_timestamp = time.time()
587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 588 job = self._backend.apply_async(batch, callback=cb)
589 self._jobs.append(job)
590
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
109 def apply_async(self, func, callback=None):
110 """Schedule a func to be run"""
--> 111 result = ImmediateResult(func)
112 if callback:
113 callback(result)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
330 # Don't delay the application, to avoid keeping the input
331 # arguments in memory
--> 332 self.results = batch()
333
334 def get(self):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
486 fit_time = time.time() - start_time
487 # _score will return dict if is_multimetric is True
--> 488 test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)
489 score_time = time.time() - start_time - fit_time
490 if return_train_score:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _score(estimator, X_test, y_test, scorer, is_multimetric)
521 """
522 if is_multimetric:
--> 523 return _multimetric_score(estimator, X_test, y_test, scorer)
524 else:
525 if y_test is None:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _multimetric_score(estimator, X_test, y_test, scorers)
551 score = scorer(estimator, X_test)
552 else:
--> 553 score = scorer(estimator, X_test, y_test)
554
555 if hasattr(score, 'item'):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/metrics/scorer.py in __call__(self, clf, X, y, sample_weight)
195
196 if y_type == "binary":
--> 197 y_pred = y_pred[:, 1]
198 elif isinstance(y_pred, list):
199 y_pred = np.vstack([p[:, -1] for p in y_pred]).T
IndexError: index 1 is out of bounds for axis 1 with size 1
Я искал эту ошибку и обнаружил некоторую похожую проблему здесь с Kerasclassifier.Но я понятия не имею, как это исправить
Keras Wrappers для Scikit Learn - не работает счетчик AUC
Может кто-нибудь объяснить мне, что не так ???