Я пытаюсь работать с проблемой классификации по меткам, Набор данных доступен здесь
Таким образом, я изменил свой ввод для LSTM RNN как:
Исходные данные были:
[-0.106902 -0.111342 0.104265 0.114448 0.067026 0.040118 0.018003
-0.082054 -0.092087 -0.192697 -0.026802 0.215549 0.344768 0.324198
0.200254 0.234357 -0.040812 0.025356 -0.193163 -0.019159 -0.051112
0.070979 0.020293 0.075366 0.126615 0.091983 0.138466 0.23322
0.024106 0.069623 0.043408 0.107059 -0.072603 0.022784 0.063041
0.089568 -0.088068 -0.10704 -0.061862 -0.008561 0.036751 -0.052483
-0.171235 -0.135565 0.045164 -0.12917 -0.115914 -0.105413 0.005252
-0.06102 -0.057999 -0.064665 -0.072545 0.021969 -0.045153 0.019881
0.022636 -0.007741 0.076754 -0.03363 -0.000429 0.115502 0.139804
0.102889 -0.158891 -0.094767 0.046051 0.147124 0.078688 -0.063363
-0.024232 0.050911 0.018356 -0.016907 -0.017603 -0.037143 -0.021808
-0.148908 -0.001696 0.003607 -0.028734 -0.074155 -0.07131 -0.033052
0.051065 0.085901 0.037884 0.076677 -0.004175 0.024224 0.00108
-0.03285 -0.067774 -0.021328 -0.038708 -0.02537 -0.053335 0.015339
-0.014152 0.024729 -0.052682 -0.016872 0.090514]
Я преобразовал в 3 dim для RNN LSTM следующим образом:
[[[-0.072794], [0.181316], [0.014368], [0.028411], [-0.041242], [-0.004056], [-0.064594],
[0.003051], [0.055096], [-0.114891], [0.067934], [0.037837], [0.025255], [0.050971],
[0.075224], [0.018362], [-0.104191], [-0.110567], [-0.027323], [0.059402], [0.081574],
[-0.023793], [-0.064557], [-0.027703], [-0.025198], [-0.016347], [0.029568], [-0.061661],
[-0.092653], [-0.186273], [-0.041202], [0.038554], [-0.059853], [0.123145], [-0.096088],
[-0.282818], [-0.125915], [0.204784], [-0.178102], [0.173425], [-0.10509], [-0.223132],
[-0.115442], [0.028586], [-0.102809], [-0.168281], [-0.029156], [-0.16269], [0.205518],
[0.058809], [-0.036977], [-0.00827], [0.037344], [0.086508], [-0.070408], [-0.106666],
[0.067168], [0.009743], [-0.006985], [0.116635], [0.087596], [0.066868], [0.096816],
[0.116658], [0.00165], [-0.079719], [0.015966], [0.057896], [-0.092253], [-0.009542],
[0.005439], [0.162932], [-0.206875], [0.119895], [0.007899], [-9.6e-05], [-0.253397],
[0.0976], [0.131022], [0.07027], [-0.057863], [-0.075103], [-0.021241], [-0.057738],
[-0.046753], [0.096566], [-0.0508], [0.122675], [-0.062557], [0.030779], [-0.034159],
[-0.05235], [-0.06705], [0.165413], [-0.05623], [0.181517], [-0.056385], [-0.002522],
[-0.049523], [-0.067518], [-0.062527], [-0.027574], [0.075115]]]
А этикетки:
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]
Теперь моя модель: (Это простая модель RSDN)
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
import data_preprocessing
batch=100
iteration=int(2175//100) #total dataset//batch_size
epoch=20
class RNNLSTM():
def __init__(self):
tf.reset_default_graph()
input_x = tf.placeholder(dtype=tf.float32,name='input',shape=[None,103,1]) #batch_size x seq_lenth x dim
labels_o = tf.placeholder(dtype=tf.float32,name='labels',shape=[None,14]) #batch_size x labels
self.placeholder={'input':input_x,'output':labels_o}
with tf.variable_scope('encoder') as scope:
cell=rnn.LSTMCell(num_units=100)
dropout_wrapper=rnn.DropoutWrapper(cell,output_keep_prob=0.5)
model,(fs,fw)=tf.nn.dynamic_rnn(dropout_wrapper,dtype=tf.float32,inputs=input_x)
batch_major = tf.transpose(model,[1,0,2])
weights=tf.get_variable(name='weights',shape=[100,14],initializer=tf.random_uniform_initializer(-0.01,0.01),dtype=tf.float32)
bias = tf.get_variable(name='bias',shape=[14],initializer=tf.random_uniform_initializer(-0.01,0.01),dtype=tf.float32)
#logits
logits= tf.matmul(batch_major[-1],weights) + bias
#passing the logits to sigmoid for normalization
pred=tf.round(tf.nn.sigmoid(logits))
#accuracy calculation
accuracy = tf.equal(pred,labels_o)
#cross entropy
ce=tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,labels=labels_o)
#calculating the loss
loss=tf.reduce_mean(ce)
#claculating accuracy
accuracy1 = tf.reduce_mean(tf.cast(accuracy, tf.float32))
#training default learning rate is 0.001
train=tf.train.AdamOptimizer().minimize(loss)
self.out={'accuracy':accuracy1,'pred':accuracy,'prob':pred,'loss':loss,'train':train,'logits':logits}
self.test={'pred':pred}
def execute_model(model):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(epoch):
for j in range(iteration):
datain=data_preprocessing.get_train_data()['input']
labels=data_preprocessing.get_train_data()['labels']
fina_out=sess.run(model.out,feed_dict={model.placeholder['input']:datain,model.placeholder['output']:labels})
print('epoch', i, 'iteration', j, 'loss', fina_out['loss'],'accuracy', fina_out['accuracy'])
print("Now testing the model with test data..")
for i in range(30):
data_test = data_preprocessing.get_test_data()['input']
labels = data_preprocessing.get_test_data()['labels']
outputp = sess.run(model.test,
feed_dict={model.placeholder['input']: data_test})
print(outputp['pred'], 'vs', labels)
if '__main__'==__name__:
result=RNNLSTM()
execute_model(result)
Даже после 20 эпох модель дает тот же результат для тестовых данных, я пытался найти в Интернете, и кто-то предложил увеличить размер вашей партии, если результат такой же, я сделал от 50 до 100 размеров партии, но результат все тот же Я думаю, что я делаю ошибку где-то, может быть, в расчете убытков или где-то еще. Пожалуйста, укажите на ошибку,
выход * * тысяча двадцать-одна
epoch 0 iteration 0 loss 0.6922738 accuracy 0.595
epoch 0 iteration 1 loss 0.69211155 accuracy 0.57928574
epoch 0 iteration 2 loss 0.6916339 accuracy 0.61071426
epoch 0 iteration 3 loss 0.6909899 accuracy 0.73
epoch 0 iteration 4 loss 0.69043064 accuracy 0.7171429
....
....
....
epoch 19 iteration 15 loss 0.4839307 accuracy 0.77428573
epoch 19 iteration 16 loss 0.49799272 accuracy 0.76857144
epoch 19 iteration 17 loss 0.49267265 accuracy 0.7714286
epoch 19 iteration 18 loss 0.5134562 accuracy 0.7614286
epoch 19 iteration 19 loss 0.5096274 accuracy 0.76857144
epoch 19 iteration 20 loss 0.48447722 accuracy 0.77
прогноз:
Predicted output vs real output
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 0 0 1 1 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 0 1 1 0 0 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 1 1 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 0 0 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 0 0 0 0 0 1 1 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 1 0 0 0 0 0 0 1 1 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 1 1 0 0 0 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 0 0 1 1 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 1 1 1]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 1 1 1]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 1 1 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 0 0 0 0 0 0 1 1 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 1 1 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 1 1 0 0 0 0 0 1 1 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 1 1 0 0 0 0 1]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 1 1 0 0 1 1 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 0 0 0 1 1 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 1 1 1 1 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 0 0 0 0 0 0 0 1 1 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 1 1 0 0 0 0 0 0 0 0 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 0 0 0 1 1 1 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [1 1 1 0 0 0 0 0 0 0 0 1 1 0]
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.]] vs [0 0 0 0 0 0 0 1 1 0 0 0 0 0]