Вы можете сделать это серией левых соединений:
df1 = left_join(df, q1, by='id') %>% filter(type=="q1")
> df1
type id value
1 q1 1 yes
2 q1 2 no
df2 = left_join(df, q2, by='id') %>% filter(type=="q2")
> df2
type id value
1 q2 1 one hour
2 q2 3 more than two hours
df3 = left_join(df, q3, by='id') %>% filter(type=="q3")
> df3
type id value
1 q3 1 blue
2 q3 2 yellow
> rbind(df1,df2,df3)
type id value
1 q1 1 yes
2 q1 2 no
3 q2 1 one hour
4 q2 3 more than two hours
5 q3 1 blue
6 q3 2 yellow
Один лайнер будет:
rbind(left_join(df, q1, by='id') %>% filter(type=="q1"),
left_join(df, q2, by='id') %>% filter(type=="q2"),
left_join(df, q3, by='id') %>% filter(type=="q3"))
Если у вас больше векторов, то, вероятно, вам следует перебрать имена векторных типов и выполнить по очереди left_join и bind_rows:
vecQs = c(paste("q", seq(1,3,1),sep="")) #Types of variables q1, q2 ...
result = tibble()
#Execute left_join for the types and store it in result.
for(i in vecQs) {
result = bind_rows(result, left_join(df,eval(as.symbol(i)) , by='id') %>% filter(type==!!i))
}
Это даст:
> result
# A tibble: 6 x 3
type id value
<chr> <int> <chr>
1 q1 1 yes
2 q1 2 no
3 q2 1 one hour
4 q2 3 more than two hours
5 q3 1 blue
6 q3 2 yellow