yon попытайтесь оценить это как смесь Guassian с меньшим количеством компонентов (как EM-алгоритм), используя sklearn
:
import matplotlib.pyplot as plt
from numpy.random import choice
from sklearn import mixture
import scipy.stats
import numpy
# generate some data
x = numpy.array([1.,1.1,1.6,2.,2.1,2.2,2.9,3.,8.,62.,62.2,63.,63.4,64.5,65.,67.,69.])
# generate weights to it
y = numpy.random.rand(x.shape[0])
# normalize weigth to 1
y /= y.sum()
# resamlple to 5000 samples with equal weights according to original weights
x_rsmp = numpy.array([choice(x, p=y) for _ in range(5000)])
x_rsmp.sort()
x_rsmp = x_rsmp.reshape(-1,1)
# define number of components - this must be user seelcted or estimated
n_comp = 2
# fit the mixture
gmm = mixture.GaussianMixture(n_components=n_comp, covariance_type='full')
gmm.fit(x_rsmp)
# plot it
fig = plt.figure()
ax = fig.add_subplot(111)
x_gauss = numpy.linspace(-10,100,1000)
for n_c in range(n_comp):
norm_pdf = scipy.stats.norm.pdf(x_gauss, gmm.means_[n_c,0], gmm.covariances_[n_c,0])
ax.plot(x_gauss, norm_pdf, label='gauss %d' % (n_c+1))
ax.stem(x,y,'gray')
plt.legend()
Это дает n_c
гауссовские компоненты со средним значением gmm.means_
и ковариациями gmm.covariances_
.
![enter image description here](https://i.stack.imgur.com/QvQXq.png)