Эту задачу можно интерпретировать как двумерную задачу, в которой выходной массив можно рассматривать как матрицу измерений sizeof(A)
раз sizeof(B)
.Таким образом, мы можем использовать 2D CUDA-индексацию для достижения желаемой функциональности.Пример кода CUDA C ++ этой 2D-реализации показан ниже:
#include <iostream>
#include <cuda_runtime.h>
#include <cassert>
using namespace std;
__global__ void kernel_replicate(int* a, int* b, int* c, int alen, int blen, int clen)
{
const int ai = blockIdx.x * blockDim.x + threadIdx.x;
const int bi = blockIdx.y * blockDim.y + threadIdx.y;
if(ai<alen && bi<blen)
{
const int ci = ai * blen + bi;
c[ci] = a[ai] + b[bi];
}
}
void replicate_device(int* a, int* b, int* c, int alen, int blen, int clen)
{
dim3 block(16,16);
dim3 grid;
grid.x = (alen + block.x - 1) / block.x;
grid.y = (blen + block.y - 1) / block.y;
kernel_replicate<<<grid, block>>>(a,b,c,alen,blen,clen);
assert(cudaSuccess == cudaDeviceSynchronize());
}
void replicate(int* a, int* b, int* c, int alen, int blen, int clen)
{
int *ad, *bd, *cd;
size_t abytes = alen * sizeof(int);
size_t bbytes = blen * sizeof(int);
size_t cbytes = clen * sizeof(int);
cudaMalloc(&ad, abytes);
cudaMalloc(&bd, bbytes);
cudaMalloc(&cd, cbytes);
cudaMemcpy(ad,a, abytes, cudaMemcpyHostToDevice);
cudaMemcpy(bd,b, bbytes, cudaMemcpyHostToDevice);
replicate_device(ad,bd,cd, alen,blen,clen);
cudaMemcpy(c,cd, cbytes, cudaMemcpyDeviceToHost);
cudaFree(ad);
cudaFree(bd);
cudaFree(cd);
}
int main()
{
const int alen = 3;
const int blen = 5;
const int clen = alen * blen;
int A[alen] = {1,2,3};
int B[blen] = {10,20,30,40,50};
int C[clen] = {0};
replicate(A,B,C,alen, blen, clen);
for(int i=0; i<alen; i++)
{
cout<<A[i]<<" ";
}
cout<<endl;
for(int i=0; i<blen; i++)
{
cout<<B[i]<<" ";
}
cout<<endl;
for(int i=0; i<clen; i++)
{
cout<<C[i]<<" ";
}
cout<<endl;
return 0;
}