Я пытаюсь использовать алгоритм дерева решений C 4.5 с 10-кратной перекрестной проверкой для обнаружения веб-спама.Мой набор данных в основном содержит 8944 наблюдения и 36 переменных после выбора объекта.
Вот мой код:
#dividing the dataset into train and test
trainRowNumbers<-createDataPartition(final1$spam,p=0.7,list=FALSE)
#Create the training dataset
trainData<-final1[trainRowNumbers,]
#Create Test data
testData<-final1[-trainRowNumbers,]
#C4.5 using 10 fold cross validation
set.seed(1958)
train_control<-createFolds(trainData$spam,k=10)
C45Fit<-train(spam~.,method="J48",data=trainData,
tuneLength=15,
trControl=trainControl(
method="cv",indexOut = train_control ))
Это ошибка, которую я получаю:
C45Fit<-train(spam~.,method="J48",data=trainData,
tuneLength=15,
trControl=trainControl(
method="cv",indexOut = train_control ))
Ошибка в train (spam ~., Method = "J48", data = trainData, tuneLength = 15,: неиспользованные аргументы (method = "J48", data = trainData, tuneLength = 15, trControl = trainControl (method= "cv", indexOut = train_control))
У меня есть пара вопросов:
Как мне решить эту ошибку?
Как установить параметр tuneLength?
Глава моего набора данных:
> head(trainData)
hostid host HST_4 HST_6 HST_7 HST_8 HST_9 HST_10 HST_16
1 0 007cleaningagent.co.uk 0.03370787 1.9791304 0.1123596 0.1516854 0.2247191 0.2977528 0.07865169
2 1 0800.loan-line.co.uk 1.39539347 2.4222020 0.2284069 0.2610365 0.3531670 0.4529750 0.02879079
4 3 102belfast.boys-brigade.org.uk 0.29729730 1.1800000 0.2162162 0.3783784 0.5135135 0.5405405 0.21621622
5 4 10bristol.boys-brigade.org.uk 0.28804348 1.7745267 0.1141304 0.1847826 0.2608696 0.3750000 0.08152174
6 5 10enfield.boys-brigade.org.uk 0.00000000 0.8468468 0.0625000 0.1875000 0.1875000 0.3125000 0.06250000
8 8 13thcoventry.co.uk 0.05797101 2.1113074 0.2318841 0.3091787 0.3961353 0.5507246 0.09178744
HST_17 HST_18 HST_20 HMG_29 HMG_40 HMG_41 HMG_42 AVG_50 AVG_51 AVG_55 AVG_57
1 0.15730337 0.2247191 0.070 0.2907760 0.02702703 0.07207207 0.1351351 32431.65 7.215054 0.02289305 0.2980171
2 0.05566219 0.1094050 0.075 0.0495162 0.10641628 0.17840376 0.2410016 150592.89 2.000000 0.49661240 0.1137439
4 0.37837838 0.4054054 0.040 0.2156130 0.03971119 0.11552347 0.1480144 16129.61 2.125000 0.12297815 0.2033877
5 0.13043478 0.2119565 0.075 0.0405612 0.08152174 0.13043478 0.2119565 28759.75 2.870968 0.19622331 0.0673372
6 0.18750000 0.2500000 0.005 0.1125400 0.02528090 0.12359551 0.1432584 70966.61 2.000000 0.03948338 0.2513755
8 0.14975845 0.2512077 0.095 0.1946150 0.04382470 0.10458167 0.1633466 109388.89 11.484940 0.03547817 0.1387366
AVG_58 AVG_59 AVG_61 AVG_63 AVG_65 AVG_67 STD_77 STD_79 STD_80 STD_81
1 0.030079101 1.888686 0.04982536 0.07119317 0.1539772 0.2237475 0.02240051 0.04634758 0.0003248904 0.07644575
2 0.005874481 2.423238 0.14016213 0.17484142 0.2460647 0.3279534 0.03014901 0.05352347 0.0006170884 0.09449420
4 0.017285860 1.657795 0.08748573 0.14192639 0.2273218 0.2815660 0.03715705 0.07385004 0.0021174754 0.15725521
5 0.007008439 1.656472 0.10088409 0.17370255 0.2791502 0.3839271 0.03382564 0.07695898 0.0011314215 0.14290420
6 0.017145414 2.284363 0.09245673 0.14045514 0.2267635 0.2907555 0.02459505 0.06418522 0.0007756064 0.16533374
8 0.001818059 2.300361 0.17326186 0.25910768 0.3351511 0.4479340 0.05611160 0.07531329 0.0005475770 0.15796253
STD_83 STD_84 STD_85 STD_87 STD_94 spam
1 0.1219990 0.001009964 0.04043011 0.04198925 0.3400028 normal
2 0.1539489 0.001734261 0.15000000 0.16000000 0.3147682 normal
4 0.2027374 0.006655953 0.06437500 0.06031250 0.7100778 normal
5 0.1925378 0.002708827 0.04258065 0.05290323 0.8195509 normal
6 0.2223814 0.005491305 0.09125000 0.08062500 1.2953592 normal
8 0.2366591 0.002588343 0.21698795 0.14774096 0.2882247 normal
Вывод sessionInfo ()
> sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252 LC_MONETARY=English_Australia.1252
[4] LC_NUMERIC=C LC_TIME=English_Australia.1252
attached base packages:
[1] grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2 ggthemes_3.5.0 randomForest_4.6-12 Metrics_0.1.3 RWeka_0.4-37 mlr_2.12.1
[7] ParamHelpers_1.10 rgeos_0.3-26 VIM_4.7.0 data.table_1.10.4-3 colorspace_1.3-2 mice_2.46.0
[13] RANN_2.5.1 kernlab_0.9-25 mlbench_2.1-1 caret_6.0-79 ggplot2_2.2.1 lattice_0.20-35
[19] dplyr_0.7.4
loaded via a namespace (and not attached):
[1] nlme_3.1-131 lubridate_1.7.3 bit64_0.9-7 dimRed_0.1.0 httr_1.3.1 backports_1.1.2 tools_3.4.0
[8] R6_2.2.2 rpart_4.1-11 DBI_0.8 lazyeval_0.2.1 nnet_7.3-12 withr_2.1.0 sp_1.2-7
[15] tidyselect_0.2.3 mnormt_1.5-5 parallelMap_1.3 bit_1.1-12 curl_3.0 compiler_3.4.0 checkmate_1.8.5
[22] scales_0.5.0 sfsmisc_1.1-1 DEoptimR_1.0-8 lmtest_0.9-35 psych_1.7.8 robustbase_0.92-8 stringr_1.2.0
[29] foreign_0.8-67 rio_0.5.10 pkgconfig_2.0.1 RWekajars_3.9.2-1 rlang_0.2.0 readxl_1.0.0 ddalpha_1.3.1
[36] BBmisc_1.11 bindr_0.1 zoo_1.8-0 ModelMetrics_1.1.0 car_3.0-0 magrittr_1.5 Matrix_1.2-12
[43] Rcpp_0.12.14 munsell_0.4.3 abind_1.4-5 stringi_1.1.6 carData_3.0-1 MASS_7.3-47 plyr_1.8.4
[50] recipes_0.1.1 parallel_3.4.0 forcats_0.3.0 haven_1.1.1 splines_3.4.0 pillar_1.2.1 boot_1.3-19
[57] rjson_0.2.15 reshape2_1.4.2 codetools_0.2-15 stats4_3.4.0 CVST_0.2-1 glue_1.2.0 laeken_0.4.6
[64] vcd_1.4-4 foreach_1.4.3 twitteR_1.1.9 cellranger_1.1.0 gtable_0.2.0 purrr_0.2.4 tidyr_0.7.2
[71] assertthat_0.2.0 DRR_0.0.2 gower_0.1.2 openxlsx_4.0.17 prodlim_1.6.1 broom_0.4.3 e1071_1.6-8
[78] class_7.3-14 survival_2.41-3 timeDate_3042.101 RcppRoll_0.2.2 tibble_1.4.2 rJava_0.9-9 iterators_1.0.8
[85] lava_1.5.1 ipred_0.9-6
Спасибо за любые предложения, представленные заранее.