Я пытаюсь смоделировать сферу и реально затенить ее, учитывая вектор происхождения света и сферу, центрированную вокруг источника. Более того, вектор света - это вектор нормалей на большей невидимой сфере в выбранной точке. Сфера смотрит в сторону.
https://imgur.com/a/IDIwQQF
Проблема в том, что очень трудно исправить ошибку такого рода программы. Особенно если учесть, что я знаю, как я хочу, чтобы это выглядело в моей голове, но когда я смотрю на числа в моей программе, в них очень мало смысла.
Поскольку я не знаю, в чем проблема, я вынужден вставить все это сюда.
public class SphereDrawing extends JPanel {
private static final long serialVersionUID = 1L;
private static final int ADJ = 320;
private static final double LIGHT_SPHERE_RADIUS = 5;
private static final double LIGHT_X = 3;
private static final double LIGHT_Y = 4;
private static final double LIGHT_Z = 0;
private static final double DRAWN_SPHERE_RADIUS = 1;
private static final int POINT_COUNT = 1000000;
private static Coord[] points;
private static final double SCALE = 200;
public SphereDrawing() {
setPreferredSize(new Dimension(640, 640));
setBackground(Color.white);
points = new Coord[POINT_COUNT];
initializePoints();
for (int i = 0; i < points.length; i++) {
points[i].scale();
}
new Timer(17, (ActionEvent e) -> {
repaint();
}).start();
}
public void initializePoints() { //finding the points on the surface of the sphere (hopefully somewhat equidistant)
double random = Math.random() * (double)POINT_COUNT;
double offset = 2/(double)POINT_COUNT;
double increment = Math.PI * (3 - Math.sqrt(5));
for (int i = 0; i < POINT_COUNT; i++) {
double y = ((i * offset) - 1) + (offset / 2);
double r = Math.sqrt(1 - Math.pow(y, 2));
double phi = ((i + random) % (double)POINT_COUNT) * increment;
double x = Math.cos(phi) * r;
double z = Math.sin(phi) * r;
points[i] = new Coord(x, y, z);
}
}
public void drawSphere(Graphics2D g) {
g.translate(ADJ, ADJ); //shifting from origin for drawing purposes
Arrays.sort(points); //sorting points by their z coordinates
double iHat = -2 * LIGHT_X;
double jHat = -2 * LIGHT_Y; //Light vector
double kHat = -2 * LIGHT_Z;
double angL1 = 0;
if (Math.abs(iHat) != 0.0)
angL1 = Math.atan(jHat / iHat); //converting light vector to spherical coordinates
else
angL1 = Math.PI/2;
double angL2 = Math.atan(Math.sqrt(Math.pow(iHat, 2) + Math.pow(jHat, 2))/ kHat);
double maxArcLength = LIGHT_SPHERE_RADIUS * Math.PI; // maximum arc length
for (int i = 0; i < points.length; i++) {
if(points[i].checkValid()) {
double siHat = -2 * points[i].x;
double sjHat = -2 * points[i].y; //finding normal vector for the given point on the sphere
double skHat = -2 * points[i].z;
double angSF1 = -1 * Math.abs(Math.atan(sjHat / siHat)); // converting vector to spherical coordinates
double angSF2 = Math.atan(Math.sqrt(Math.pow(siHat, 2) + Math.pow(sjHat, 2))/ skHat);
double actArcLength = LIGHT_SPHERE_RADIUS * Math.acos(Math.cos(angL1) * Math.cos(angSF1) + Math.sin(angL1) * Math.sin(angSF1) * Math.cos(angL2 - angSF2)); //calculating arc length at this point
double comp = actArcLength / maxArcLength; // comparing the maximum arc length to the calculated arc length for this vector
int col = (int)(comp * 255);
col = Math.abs(col);
g.setColor(new Color(col, col, col));
double ovalDim = (4 * Math.PI * Math.pow(DRAWN_SPHERE_RADIUS, 2))/POINT_COUNT; //using surface area to determine how large size of each point should be drawn
if (ovalDim < 1) // if it too small, make less small
ovalDim = 2;
g.fillOval((int)points[i].x, (int)points[i].y, (int)ovalDim, (int)ovalDim); //draw this oval
}
}
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawSphere(g);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Sphere");
f.setResizable(false);
f.add(new SphereDrawing(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
@SuppressWarnings("rawtypes")
private class Coord implements Comparable {
public double x;
public double y;
public double z;
public Coord(double x2, double y2, double z2) {
x = x2;
y = y2;
z = z2;
}
public void scale() {
x *= SCALE;
y *= SCALE; //drawing purposes
z *= SCALE;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(Object c) {
double diff = this.z - ((Coord)c).z;
if (diff < 0)
return -1;
else if (diff > 0) //for sorting the array of points
return 1;
else
return 0;
}
public boolean checkValid() {
return (z > 0); //checks if need to draw this point
}
}
}
Я надеялся, по крайней мере, нарисовать реалистично выглядящую сферу, даже если не совсем точную, и я не мог сказать вам, что именно с моей