Я пытаюсь создать фрейм данных из RDD, чтобы иметь возможность записи в json со следующим форматом
Пример json, как показано ниже (ожидаемый результат)
"1234": [
{
LOC: 'ABC',
cost1: 1,234,
cost2: 2,3445
},
{
LOC: 'WWW',
cost1: 1,534,
cost2: 6,3445
}
]
Я могу сгенерировать JSON с cost1 и cost2 в формате String. Но я хочу, чтобы cost1 и cost2 были удвоены.
Я получаю сообщение об ошибке при создании фрейма данных из rdd с использованием определенной схемы.
Каким-то образом данные рассматриваются как String вместо double.
Может ли кто-нибудь помочь мне понять это правильно?
Ниже приведен мой scala-код моего примера реализации
object csv2json {
def f[T](v: T) = v match {
case _: Int => "Int"
case _: String => "String"
case _: Float => "Float"
case _: Double => "Double"
case _:BigDecimal => "BigDecimal"
case _ => "Unknown"
}
def main(args: Array[String]): Unit = {
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().master("local").getOrCreate()
import spark.implicits._
val input_df = Seq(("12345", "111","1.34","2.34"),("123456", "112","1.343","2.344"),("1234", "113","1.353","2.354"),("1231", "114","5.343","6.344")).toDF("item_id","loc","cost1","cost2")
input_df.show()
val inputRDD = input_df.rdd.map(data => {
val nodeObj = scala.collection.immutable.Map("nodeId" -> data(1).toString()
,"soc" -> data(2).toString().toDouble
,"mdc" -> data(3).toString().toDouble)
(data(0).toString(),nodeObj)
})
val inputRDDAgg = inputRDD.aggregateByKey(scala.collection.mutable.ListBuffer.empty[Any])((nodeAAggreg,costValue) => nodeAAggreg += costValue , (nodeAAggreg,costValue) => nodeAAggreg ++ costValue)
val inputRDDAggRow = inputRDDAgg.map(data => {
println(data._1 + "and------ " + f(data._1))
println(data._2 + "and------ " + f(data._2))
val skuObj = Row(
data._1,
data._2)
skuObj
}
)
val innerSchema = ArrayType(MapType(StringType, DoubleType, true))
val schema:StructType = StructType(Seq(StructField(name="skuId", dataType=StringType),StructField(name="nodes", innerSchema)))
val finalJsonDF = spark.createDataFrame(inputRDDAggRow, schema)
finalJsonDF.show()
}
}
Ниже приведена трассировка стека исключений:
java.lang.RuntimeException: Error while encoding: java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Double
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, skuId), StringType), true, false) AS skuId#32
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else mapobjects(MapObjects_loopValue0, MapObjects_loopIsNull0, ObjectType(class java.lang.Object), if (isnull(validateexternaltype(lambdavariable(MapObjects_loopValue0, MapObjects_loopIsNull0, ObjectType(class java.lang.Object), true), MapType(StringType,DoubleType,true)))) null else newInstance(class org.apache.spark.sql.catalyst.util.ArrayBasedMapData), validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, nodes), ArrayType(MapType(StringType,DoubleType,true),true)), None) AS nodes#33
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:291)
at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:589)
at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:589)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)