Вы можете использовать intersection
:
L = ['name', 'issuer_id', 'service_area_id']
cols = df.columns.intersection(L)
(df[cols].notnull().all(axis=1))
EDIT:
df = pd.DataFrame({
'name':list('abcdef'),
'plan_year':[2015,2015,2015,5,5,4],
})
print (df)
name plan_year
0 a 2015
1 b 2015
2 c 2015
3 d 5
4 e 5
5 f 4
Идея состоит в том, чтобы сначала создать словарь допустимых значений для каждого столбца:
valid = {'name':'a',
'issuer_id':'a',
'service_area_id':'a',
'plan_year':2015,
...}
Затем отфильтруйте новый словарь по отсутствующим столбцам и assign
до исходного DataFrame
и создайте новый фрейм данных:
d1 = {k: v for k, v in valid.items() if k in set(valid.keys()) - set(df.columns)}
print (d1)
{'issuer_id': 'a', 'service_area_id': 'a'}
df1 = df.assign(**d1)
print (df1)
name plan_year issuer_id service_area_id
0 a 2015 a a
1 b 2015 a a
2 c 2015 a a
3 d 5 a a
4 e 5 a a
5 f 4 a a
Последний фильтр:
m1 = (df1[['name', 'issuer_id', 'service_area_id']].notnull().all(axis=1))
m2 = ((df1['plan_year'].notnull()) &
(df1['plan_year'].astype(str).str.isdigit()) &
(df1['plan_year'].astype(str).str.len() == 4))
df1 = df1[m1 & m2]
print (df1)
name plan_year issuer_id service_area_id
0 a 2015 a a
1 b 2015 a a
2 c 2015 a a
Последнее, что вы можете удалить вспомогательные столбцы:
df1 = df1[m1 & m2].drop(d1.keys(), axis=1)
print (df1)
name plan_year
0 a 2015
1 b 2015
2 c 2015