Я думаю, что нужно заказать CategoricalIndex
для правильного упорядочения при выводе с DatetimeIndex.month_name
или DatetimeIndex.strftime
с совокупностью mean
:
cats = ['January','February','March','April','May','June','July','August',
'September','October','November','December']
idx = pd.CategoricalIndex(df.index.month_name(), categories=cats, ordered=True)
#alternative solution
#idx = pd.CategoricalIndex(df.index.strftime('%B'), categories=cats, ordered=True)
df1 = df.groupby(idx).mean()
print (df1)
a b c d e
Statement Date
January 831.666667 78.196667 0.095388 33.000000 6.646667
February 792.000000 75.996667 0.096199 4.333333 4.700000
March 926.333333 88.363333 0.096126 0.000000 4.700000
April 758.000000 72.593333 0.098025 0.666667 4.700000
May 634.000000 61.470000 0.096602 9.000000 4.700000
June 469.000000 41.850000 0.090064 0.000000 4.700000
July 405.000000 36.245000 0.089387 0.000000 4.700000
August 596.500000 56.865000 0.092401 0.000000 4.700000
September 485.000000 47.215000 0.096271 0.000000 4.700000
October 473.500000 48.770000 0.102962 0.000000 4.700000
November 835.000000 81.625000 0.099413 0.000000 4.700000
December 862.666667 82.116667 0.096263 0.000000 4.700000
А DatetimeIndex.year
для агрегата sum
:
df2 = df.groupby(df.index.year).sum()
print (df2)
a b c d e
Statement Date
2003 655.0 54.51 0.083221 0.0 4.70
2004 8987.0 783.77 1.047944 0.0 56.40
2005 7654.0 775.40 1.214048 0.0 56.40
2006 3646.0 387.67 0.531590 141.0 29.34