Я пытаюсь сделать большую мультиклассовую классификацию (на самом деле перевод).
Я пытаюсь использовать tenorflow nce_loss в керасе, но не могу заставить его работать. Любая помощь здесь?
Я не уверен, как я могу передать веса, num_class и смещение из предыдущего слоя в nce_loss.
Я получаю следующую ошибку:
import tensorflow as tf
from attention_decoder import AttentionDecoder
from keras.layers import Dropout,Masking,Embedding
def keras_nce_loss(tgt, pred):
return tf.nn.nce_loss(labels=tgt,inputs=pred,num_sampled=100)
model2 = Sequential()
model2.add(Embedding(input_features, input_embed_dimension, input_length=n_timesteps_in,mask_zero=True))
model2.add(Dropout(0.2))
model2.add(LSTM(LSTM_Unitsize,return_sequences=True,activation='relu'))
model2.add(Masking(mask_value=0.))
model2.add(AttentionDecoder(LSTM_Unitsize, n_features))
model2.compile(loss=keras_nce_loss, optimizer='adam', metrics=['acc'])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-157-0d76d4053a42> in <module>()
11 model2.add(Masking(mask_value=0.))
12 model2.add(AttentionDecoder(LSTM_Unitsize, n_features))
---> 13 model2.compile(loss=keras_nce_loss, optimizer='adam', metrics=['acc'])
14 #model2.save("model2_compiled.hd5")
/usr/local/lib/python3.6/dist-packages/keras/models.py in compile(self, optimizer, loss, metrics, sample_weight_mode, **kwargs)
786 metrics=metrics,
787 sample_weight_mode=sample_weight_mode,
--> 788 **kwargs)
789 self.optimizer = self.model.optimizer
790 self.loss = self.model.loss
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, **kwargs)
909 loss_weight = loss_weights_list[i]
910 output_loss = weighted_loss(y_true, y_pred,
--> 911 sample_weight, mask)
912 if len(self.outputs) > 1:
913 self.metrics_tensors.append(output_loss)
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in weighted(y_true, y_pred, weights, mask)
434 """
435 # score_array has ndim >= 2
--> 436 score_array = fn(y_true, y_pred)
437 if mask is not None:
438 # Cast the mask to floatX to avoid float64 upcasting in theano
<ipython-input-155-ec20de882530> in keras_nce_loss(tgt, pred)
2
3 def keras_nce_loss(tgt, pred):
----> 4 return tf.nn.nce_loss(labels=tgt,inputs=pred,num_sampled=100)
TypeError: nce_loss() missing 3 required positional arguments: 'weights', 'biases', and 'num_classes'