Я хочу построить такую кривую, используя периодический сплайн:
У меня есть следующие значения:
Итак, я создал следующий код Matlab для построения этой функции:
%initializing values
t = [1,2,3,4,5,6,7,8,9,10,11,12,13];
tplot = [1:0.1:13];
x = [2.5,1.3,-0.25,0.0,0.25,-1.3,-2.5,-1.3,0.25,0.0,-0.25,1.3,2.5];
y = [0.0,-0.25,1.3,2.5,1.3,-0.25,0.0,0.25,-1.3,-2.5,-1.3,0.25,0.0];
[a1, b1, c1, d1] = perspline2(t,x);
[a2, b2, c2, d2] = perspline2(t,y);
for i = 1:12
xx = linspace(x(i), x(i+1), 100);
xxx = a1(i) + b1(i)*(xx-x(i)) + c1(i)*(xx-x(i)).^2 ...
+ d1(i)*(xx-x(i)).^3;
yyy = a2(i) + b2(i)*(xx-x(i)) + c2(i)*(xx-x(i)).^2 ...
+ d2(i)*(xx-x(i)).^3;
h3=plot(xxx, yyy, 'r-');
hold on
end
plot(x,y,'k.', 'MarkerSize', 30)
hold off
Если perspline2 () выглядит следующим образом:
function [a1,b1,c1,d1] = perspline2(xnot,ynot)
x = xnot';
y = ynot';
n = length(x) - 1;
h = diff(x);
diag0 = [1; 2*(h(1:end-1)+h(2:end)); 2*h(end)];
A = spdiags([[h;0], diag0, [0;h]], [-1, 0, 1], n+1, n+1);
% Do a little surgery on the matrix:
A(1,2) = 0;
A(1,end) = -1;
A(end,1) = 2*h(1);
A(end,2) = h(1);
dy = diff(y);
rhs = 6*[0; diff(dy./h); dy(1)/h(1)-dy(end)/h(end)];
m = A \ rhs; % Solve for the slopes, S''(x_i)
% Compute the coefficients of the cubics.
a1 = y;
b1 = dy./h - h.*m(1:end-1)/2 - h.*diff(m)/6;
c1 = m/2;
d1 = diff(m)./h/6;
Итак, я знаю, что должен использовать параметрический сплайн, чтобы найти правильные точки для построения.
Я использую t = [1,2,3,4,5,6,7,8,9,10,11,12,13];
в качестве своих индексов. Итак, я нахожу коэффициенты для полинома кубического сплайна t против x, а затем нахожу коэффициенты для t против y, а затем пытаюсь построить их друг против друга, используя значения из t для построения параметрической кривой. Тем не менее, я продолжаю получать эту кривую:
Я действительно не уверен, почему это происходит.
P.S. Я знаю, что могу использовать функцию сплайна matlab, но когда я это делаю, это приводит к тому, что правый острие немного больше, чем у других остриев. Я хочу, чтобы все каспы были равны по размеру, и в задании сказано, что мы должны использовать кубический сплайн.
Любая помощь очень ценится.