Внедрение U-сети для многоклассовой сегментации дорог - PullRequest
0 голосов
/ 15 ноября 2018

Я пытаюсь обучить U-сеть для сегментации изображения на спутниковых данных и тем самым выделить сеть дорог с девятью различными типами дорог. До сих пор я пробовал много разных кодов U-сети, которые свободно доступны в сети, однако я не смог адаптировать их к своему конкретному случаю. Я искренне надеюсь, что вы сможете мне помочь.

Спутниковое изображение и связанные с ним метки можно скачать по следующей ссылке: Спутниковое изображение и связанные с ним метки

Кроме того, я написал следующий код для подготовки данных для Unet

import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict

#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]

#Scaling image
img_scaled = images / images.max()

#Make non-roads 0
labels[labels == 15] = 0

#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400,:4 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)

#splitting images
split_img = [
    np.split(array, 25, axis=0) 
    for array in np.split(img_scaled_resized, 25, axis=1)
]

split_img[-1][-1].shape

#splitting labels
split_labels = [
    np.split(array, 25, axis=0) 
    for array in np.split(labels_resized, 25, axis=1)
]

#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)

train_images = np.reshape(split_img, (625, 256, 256, 4))
train_labels = np.reshape(split_labels, (625, 256, 256))

x_trn = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]

y_trn = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]

plt.imshow(train_images[88,:,:,:])
skimage.io.imshow(train_labels[88,:,:])

Кроме того, я нашел следующую сеть U на kaggle, которая, я думаю, должна работать в данном конкретном случае:

def get_unet():
    inputs = Input((8, ISZ, ISZ))
    conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
    conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
    conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
    conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)

    up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
    conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
    conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)

    up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
    conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
    conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)

    up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
    conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
    conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)

    up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
    conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
    conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)

    conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid')(conv9)

    model = Model(input=inputs, output=conv10)
    model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
    return model

Я знаю, что это большой вопрос, но я очень отчаялся. Любая помощь с благодарностью!

С уважением,

Eeuwigestudent1

1 Ответ

0 голосов
/ 17 ноября 2018

я обнаружил, что Conv2DTranspose работает лучше, чем UpSampling2D, и вот быстрая реализация с использованием того же

def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    return x


def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
    y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
    y = concatenate([y, residual], axis=3)
    y = conv_block(y, nfilters)
    return y


def Unet(img_height, img_width, nclasses=3, filters=64):
# down
    input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
    conv1 = conv_block(input_layer, nfilters=filters)
    conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = conv_block(conv1_out, nfilters=filters*2)
    conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = conv_block(conv2_out, nfilters=filters*4)
    conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = conv_block(conv3_out, nfilters=filters*8)
    conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
    conv4_out = Dropout(0.5)(conv4_out)
    conv5 = conv_block(conv4_out, nfilters=filters*16)
    conv5 = Dropout(0.5)(conv5)
# up
    deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
    deconv6 = Dropout(0.5)(deconv6)
    deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
    deconv7 = Dropout(0.5)(deconv7) 
    deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
    deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
# output
    output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
    output_layer = BatchNormalization()(output_layer)
    output_layer = Activation('softmax')(output_layer)

    model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
    return model

Теперь для генераторов данных вы можете использовать встроенный ImageDataGeneratorкласс здесь - это код из Keras docs

# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
                     featurewise_std_normalization=True,
                     rotation_range=90,
                     width_shift_range=0.1,
                     height_shift_range=0.1,
                     zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)

# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)

image_generator = image_datagen.flow_from_directory(
    'data/images',
    class_mode=None,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    'data/masks',
    class_mode=None,
    seed=seed)

# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)

model.fit_generator(
    train_generator,
    steps_per_epoch=2000,
    epochs=50)

Другой путь - реализовать собственный генератор путем расширения класса Sequence из Keras

class seg_gen(Sequence):
    def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
        self.x, self.y = x_set, y_set
        self.batch_size = batch_size
        self.samples = len(self.x)
        self.image_dir = image_dir
        self.mask_dir = mask_dir

    def __len__(self):
        return int(np.ceil(len(self.x) / float(self.batch_size)))

    def __getitem__(self, idx):
        idx = np.random.randint(0, self.samples, batch_size)
        batch_x, batch_y = [], []
        drawn = 0
        for i in idx:
            _image = image.img_to_array(image.load_img(f'{self.image_dir}/{self.x[i]}', target_size=(img_height, img_width)))/255.   
            mask = image.img_to_array(image.load_img(f'{self.mask_dir}/{self.y[i]}', grayscale=True, target_size=(img_height, img_width)))
#             mask = np.resize(mask,(img_height*img_width, classes))
            batch_y.append(mask)
            batch_x.append(_image)
        return np.array(batch_x), np.array(batch_y)

Вот пример кода для обучения модели

unet = Unet(256, 256, nclasses=66, filters=64)
print(unet.output_shape)
p_unet = multi_gpu_model(unet, 4)
p_unet.load_weights('models-dr/top_weights.h5')
p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)


p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)

Я пытался использовать потерю игральных костей, когда у меня было только два класса, вот код для этого

def dice_coeff(y_true, y_pred):
    smooth = 1.
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
    return score

def dice_loss(y_true, y_pred):
    loss = 1 - dice_coeff(y_true, y_pred)
    return loss
...