Как построить классификацию текста, используя tf-idf svm sklearn в python - PullRequest
0 голосов
/ 14 мая 2018

Я реализовал классификацию текста, используя tf-idf и SVM, следуя инструкции из этого руководства

Классификация работает правильно.Теперь я хочу отобразить значения tf-idf (то есть особенности), а также посмотреть, как была сгенерирована последняя гиперплоскость, которая классифицирует данные на два класса.

Реализован следующий код:

import os
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import StratifiedKFold

def make_Corpus(root_dir):
    polarity_dirs = [os.path.join(root_dir,f) for f in os.listdir(root_dir)]    
    corpus = []    
    for polarity_dir in polarity_dirs:
        reviews = [os.path.join(polarity_dir,f) for f in os.listdir(polarity_dir)]
        for review in reviews:
            doc_string = "";
            with open(review) as rev:
                for line in rev:
                    doc_string = doc_string + line
            if not corpus:
                corpus = [doc_string]
            else:
                corpus.append(doc_string)
    return corpus

#Create a corpus with each document having one string
root_dir = 'txt_sentoken'
corpus = make_Corpus(root_dir)

#Stratified 10-cross fold validation with SVM and Multinomial NB 
labels = np.zeros(2000);
labels[0:1000]=0;
labels[1000:2000]=1; 

kf = StratifiedKFold(n_splits=10)

totalsvm = 0           # Accuracy measure on 2000 files
totalNB = 0
totalMatSvm = np.zeros((2,2));  # Confusion matrix on 2000 files
totalMatNB = np.zeros((2,2));

for train_index, test_index in kf.split(corpus,labels):
    X_train = [corpus[i] for i in train_index]
    X_test = [corpus[i] for i in test_index]
    y_train, y_test = labels[train_index], labels[test_index]
    vectorizer = TfidfVectorizer(min_df=5, max_df = 0.8, sublinear_tf=True, use_idf=True,stop_words='english')
    train_corpus_tf_idf = vectorizer.fit_transform(X_train) 
    test_corpus_tf_idf = vectorizer.transform(X_test)

    model1 = LinearSVC()
    model2 = MultinomialNB()    
    model1.fit(train_corpus_tf_idf,y_train)
    model2.fit(train_corpus_tf_idf,y_train)
    result1 = model1.predict(test_corpus_tf_idf)
    result2 = model2.predict(test_corpus_tf_idf)

    totalMatSvm = totalMatSvm + confusion_matrix(y_test, result1)
    totalMatNB = totalMatNB + confusion_matrix(y_test, result2)
    totalsvm = totalsvm+sum(y_test==result1)
    totalNB = totalNB+sum(y_test==result2)

print totalMatSvm, totalsvm/2000.0, totalMatNB, totalNB/2000.0

Я прочитал, как построить графики, но не смог найти учебник, связанный с графикой функций tf-idf, а также гиперплоскости, сгенерированной SVM.

1 Ответ

0 голосов
/ 14 мая 2018

Во-первых, вам нужно выбрать только 2 объекта, чтобы создать двухмерный график поверхности принятия решения.

Пример с использованием некоторых синтетических данных:

from sklearn.svm import SVC
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt

newsgroups_train = fetch_20newsgroups(subset='train', 
                                      categories=['alt.atheism', 'sci.space'])
pipeline = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer())])        
X = pipeline.fit_transform(newsgroups_train.data).todense()

# Select ONLY 2 features
X = np.array(X)
X = X[:, [0,1]]
y = newsgroups_train.target

def make_meshgrid(x, y, h=.02):
    x_min, x_max = x.min() - 1, x.max() + 1
    y_min, y_max = y.min() - 1, y.max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    return xx, yy

def plot_contours(ax, clf, xx, yy, **params):
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    out = ax.contourf(xx, yy, Z, **params)
    return out

model = svm.SVC(kernel='linear')
clf = model.fit(X, y)

fig, ax = plt.subplots()
# title for the plots
title = ('Decision surface of linear SVC ')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y label here')
ax.set_xlabel('x label here')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
ax.legend()
plt.show()

РЕЗУЛЬТАТЫ

Using your data

Сюжет не очень хорош, поскольку мы случайно выбрали только 2 объекта для его создания.Один из способов сделать это хорошо: вы можете использовать univariate ranking method (например, тест ANOVA F-value) и найти лучшие top-2 функции.Затем, используя эти top-2, вы можете создать хороший участок разделительной поверхности.

...