Я считаю, что нужно создать логическую маску, а затем добавить значение на DataFrame.loc
:
mask = (df['col_A'] == 1) & (df['col_B']!='None')
#if None is not string
#mask = (df['col_A'] == 1) & (df['col_B'].notnull())
df.loc[mask, 'col_new'] = 'col_new'
Sample
В столбце есть строки None
s:
df = pd.DataFrame({
'col_A': [1,1,2,1],
'col_B': ['a','None','None','a']
})
print (df)
col_A col_B
0 1 a
1 1 None
2 2 None
3 1 a
mask = (df['col_A'] == 1) & (df['col_B']!='None')
df.loc[mask, 'col_new'] = 'val'
print (df)
col_A col_B col_new
0 1 a val
1 1 None NaN
2 2 None NaN
3 1 a val
В столбце не строки None
с , затем используйте Series.notna
:
df = pd.DataFrame({
'col_A': [1,1,2,1],
'col_B': ['a',None,None,'a']
})
print (df)
col_A col_B
0 1 a
1 1 None
2 2 None
3 1 a
mask = (df['col_A'] == 1) & (df['col_B'].notna())
#oldier pandas versions
#mask = (df['col_A'] == 1) & (df['col_B'].notnull())
df.loc[mask, 'col_new'] = 'val'
print (df)
col_A col_B col_new
0 1 a val
1 1 None NaN
2 2 None NaN
3 1 a val
Также, если хотите, используйте if-else
выражение numpy.where
действительно полезно:
df['col_new'] = np.where(mask, 'val', 'another_val')
print (df)
col_A col_B col_new
0 1 a val
1 1 None another_val
2 2 None another_val
3 1 a val