Для использования разных бэкэндов keras в разных средах в Anaconda - 'env1' и 'env2'
- Активация первой среды 'env1'
- Импорт керас из python по умолчаниюбэкэнд (если, например, не удается загрузить tenorflow, например, установить тензор потока в этой среде)
- В папке ~ будет создана папка '.keras', которая будет содержать файл keras.json
- Для другой среды создайте копию папки «.keras» как «.keras1»
- Измените файл keras.json в этой папке в соответствии с требованиями (поле «backend»)
- Для использования этой конфигурации в 'env2' перейдите в '~ / anaconda3 / envs / env2 / lib / pythonx.x / site-packages / keras / backend' и отредактируйте __ init __. Py file
- Внесите изменения, помеченные ##
- Вы сможете импортировать кера с разными бэкэндами в env1 и env2
from __future__ import absolute_import
from __future__ import print_function
import os
import json
import sys
import importlib
from .common import epsilon
from .common import floatx
from .common import set_epsilon
from .common import set_floatx
from .common import cast_to_floatx
from .common import image_data_format
from .common import set_image_data_format
# Set Keras base dir path given KERAS_HOME env variable, if applicable.
# Otherwise either ~/.keras or /tmp.
if 'KERAS_HOME' in os.environ:
_keras_dir = os.environ.get('KERAS_HOME')
else:
_keras_base_dir = os.path.expanduser('~')
if not os.access(_keras_base_dir, os.W_OK):
_keras_base_dir = '/tmp'
_keras_dir = os.path.join(_keras_base_dir, '.keras1')##
# Default backend: TensorFlow.
_BACKEND = 'tensorflow'
# Attempt to read Keras config file.
_config_path = os.path.expanduser(os.path.join(_keras_dir, 'keras.json'))
if os.path.exists(_config_path):
try:
with open(_config_path) as f:
_config = json.load(f)
except ValueError:
_config = {}
_floatx = _config.get('floatx', floatx())
assert _floatx in {'float16', 'float32', 'float64'}
_epsilon = _config.get('epsilon', epsilon())
assert isinstance(_epsilon, float)
_backend = _config.get('backend', _BACKEND)
_image_data_format = _config.get('image_data_format',
image_data_format())
assert _image_data_format in {'channels_last', 'channels_first'}
set_floatx(_floatx)
set_epsilon(_epsilon)
set_image_data_format(_image_data_format)
_BACKEND = _backend
# Save config file, if possible.
if not os.path.exists(_keras_dir):
try:
os.makedirs(_keras_dir)
except OSError:
# Except permission denied and potential race conditions
# in multi-threaded environments.
pass
if not os.path.exists(_config_path):
_config = {
'floatx': floatx(),
'epsilon': epsilon(),
'backend': _BACKEND,
'image_data_format': image_data_format()
}
try:
with open(_config_path, 'w') as f:
f.write(json.dumps(_config, indent=4))
except IOError:
# Except permission denied.
pass
# Set backend based on KERAS_BACKEND flag, if applicable.
if 'KERAS_BACKEND' in os.environ:
_backend = os.environ['KERAS_BACKEND']
_BACKEND = _backend
# Import backend functions.
if _BACKEND == 'cntk':
sys.stderr.write('Using CNTK backend\n')
from .cntk_backend import *
elif _BACKEND == 'theano':
sys.stderr.write('Using Theano backend.\n')
from .theano_backend import *
elif _BACKEND == 'tensorflow':
sys.stderr.write('Using TensorFlow backend.\n')
from .tensorflow_backend import *
else:
# Try and load external backend.
try:
backend_module = importlib.import_module(_BACKEND)
entries = backend_module.__dict__
# Check if valid backend.
# Module is a valid backend if it has the required entries.
required_entries = ['placeholder', 'variable', 'function']
for e in required_entries:
if e not in entries:
raise ValueError('Invalid backend. Missing required entry : ' + e)
namespace = globals()
for k, v in entries.items():
# Make sure we don't override any entries from common, such as epsilon.
if k not in namespace:
namespace[k] = v
sys.stderr.write('Using ' + _BACKEND + ' backend.\n')
except ImportError:
raise ValueError('Unable to import backend : ' + str(_BACKEND))
def backend():
"""Publicly accessible method
for determining the current backend.
# Returns
String, the name of the backend Keras is currently using.
# Example
```python
>>> keras.backend.backend()
'tensorflow'
```
"""
return _BACKEND