Как «обернуть [DCdensity] в дополнительные графические опции для изменения графика»? пакет rdd - PullRequest
0 голосов
/ 14 сентября 2018

Я использую функцию DCdensity пакета rdd (дизайн с разрывом регрессии) и хотел бы изменить внешний вид графика. Я перешел к файлу справки для этой функции и обнаружил следующее под plot: «Пользователь может обернуть эту функцию дополнительными графическими параметрами для изменения графика». Как я могу сделать это на практике?

Замечу, что мой вопрос такой же, как и у Параметры графика R в rdd :: DCdensity . Однако один ответ на этот старый вопрос для меня неудовлетворителен, потому что я не хочу изменять глобальные параметры графика, но хочу изменять их локально / конкретно для каждого приложения (например, изменение вертикальной линии).

Вот MWE (прямо из справочного файла ):

library(rdd)
x<-runif(1000,-1,1)
x<-x+2*(runif(1000,-1,1)>0&x<0)
DCdensity(x,0,plot=TRUE)

Вот два варианта, которые я хотел бы реализовать:

Изменить ось X:

xlim=c(-0.5,0.5) 

и добавить вертикальную линию в отсечении:

abline(v=0)

1 Ответ

0 голосов
/ 19 сентября 2018

Я думаю, что под «упаковкой» они подразумевали что-то вроде следующего:

library(rdd)

myDCdensity <- function(runvar, cutpoint, my_abline = 0, my_title = "Default"){

  # get the default plot
  myplot <- DCdensity(runvar, cutpoint)

  # 'additional graphical options to modify the plot'
  abline(v = my_abline)
  title(main = my_title)

  # return
  return(myplot)
}

# run to verify
x <- runif(1000, -1, 1)
x <- x + 2 * (runif(1000, -1, 1) > 0 & x < 0)
myDCdensity(x, 0)
myDCdensity(x, 0, my_abline = 0.4, my_title = "Some other title")

Вы упомянули, что вы также хотели бы установить xlim.Здесь ситуация более сложная, так как эта опция передается в функцию plot и кажется, что вы не можете изменить ее после того, как график нарисован, поэтому «обтекание» вам не поможет.Если вам необходимо также контролировать xlim, проще всего написать собственную функцию на основе исходного кода:

1) получить исходный код функции с помощью rdd::DCdensity (без скобок)

2) измените настройку xlim и сохраните как собственную функцию:

DCdensity2 <- function (runvar, cutpoint, bin = NULL, bw = NULL, verbose = FALSE, 
          plot = TRUE, ext.out = FALSE, htest = FALSE, my_xlim = c(-0.5,0.5)) # my_xlim param added
{
  runvar <- runvar[complete.cases(runvar)]
  rn <- length(runvar)
  rsd <- sd(runvar)
  rmin <- min(runvar)
  rmax <- max(runvar)
  if (missing(cutpoint)) {
  if (verbose) 
  cat("Assuming cutpoint of zero.\n")
  cutpoint <- 0
  }
  if (cutpoint <= rmin | cutpoint >= rmax) {
  stop("Cutpoint must lie within range of runvar")
  }
  if (is.null(bin)) {
  bin <- 2 * rsd * rn^(-1/2)
  if (verbose) 
  cat("Using calculated bin size: ", sprintf("%.3f", 
  bin), "\n")
  }
  l <- floor((rmin - cutpoint)/bin) * bin + bin/2 + cutpoint
  r <- floor((rmax - cutpoint)/bin) * bin + bin/2 + cutpoint
  lc <- cutpoint - (bin/2)
  rc <- cutpoint + (bin/2)
  j <- floor((rmax - rmin)/bin) + 2
  binnum <- round((((floor((runvar - cutpoint)/bin) * bin + 
  bin/2 + cutpoint) - l)/bin) + 1)
  cellval <- rep(0, j)
  for (i in seq(1, rn)) {
  cnum <- binnum[i]
  cellval[cnum] <- cellval[cnum] + 1
  }
  cellval <- (cellval/rn)/bin
  cellmp <- seq(from = 1, to = j, by = 1)
  cellmp <- floor(((l + (cellmp - 1) * bin) - cutpoint)/bin) * 
  bin + bin/2 + cutpoint
  if (is.null(bw)) {
  leftofc <- round((((floor((lc - cutpoint)/bin) * bin + 
  bin/2 + cutpoint) - l)/bin) + 1)
  rightofc <- round((((floor((rc - cutpoint)/bin) * bin + 
  bin/2 + cutpoint) - l)/bin) + 1)
  if (rightofc - leftofc != 1) {
  stop("Error occurred in bandwidth calculation")
  }
  cellmpleft <- cellmp[1:leftofc]
  cellmpright <- cellmp[rightofc:j]
  P.lm <- lm(cellval ~ poly(cellmp, degree = 4, raw = T), 
  subset = cellmp < cutpoint)
  mse4 <- summary(P.lm)$sigma^2
  lcoef <- coef(P.lm)
  fppleft <- 2 * lcoef[3] + 6 * lcoef[4] * cellmpleft + 
  12 * lcoef[5] * cellmpleft * cellmpleft
  hleft <- 3.348 * (mse4 * (cutpoint - l)/sum(fppleft * 
  fppleft))^(1/5)
  P.lm <- lm(cellval ~ poly(cellmp, degree = 4, raw = T), 
  subset = cellmp >= cutpoint)
  mse4 <- summary(P.lm)$sigma^2
  rcoef <- coef(P.lm)
  fppright <- 2 * rcoef[3] + 6 * rcoef[4] * cellmpright + 
  12 * rcoef[5] * cellmpright * cellmpright
  hright <- 3.348 * (mse4 * (r - cutpoint)/sum(fppright * 
  fppright))^(1/5)
  bw = 0.5 * (hleft + hright)
  if (verbose) 
  cat("Using calculated bandwidth: ", sprintf("%.3f", 
  bw), "\n")
  }
  if (sum(runvar > cutpoint - bw & runvar < cutpoint) == 0 | 
  sum(runvar < cutpoint + bw & runvar >= cutpoint) == 0) 
  stop("Insufficient data within the bandwidth.")
  if (plot) {
  d.l <- data.frame(cellmp = cellmp[cellmp < cutpoint], 
  cellval = cellval[cellmp < cutpoint], dist = NA, 
  est = NA, lwr = NA, upr = NA)
  pmin <- cutpoint - 2 * rsd
  pmax <- cutpoint + 2 * rsd
  for (i in 1:nrow(d.l)) {
  d.l$dist <- d.l$cellmp - d.l[i, "cellmp"]
  w <- kernelwts(d.l$dist, 0, bw, kernel = "triangular")
  newd <- data.frame(dist = 0)
  pred <- predict(lm(cellval ~ dist, weights = w, data = d.l), 
  interval = "confidence", newdata = newd)
  d.l$est[i] <- pred[1]
  d.l$lwr[i] <- pred[2]
  d.l$upr[i] <- pred[3]
  }
  d.r <- data.frame(cellmp = cellmp[cellmp >= cutpoint], 
  cellval = cellval[cellmp >= cutpoint], dist = NA, 
  est = NA, lwr = NA, upr = NA)
  for (i in 1:nrow(d.r)) {
  d.r$dist <- d.r$cellmp - d.r[i, "cellmp"]
  w <- kernelwts(d.r$dist, 0, bw, kernel = "triangular")
  newd <- data.frame(dist = 0)
  pred <- predict(lm(cellval ~ dist, weights = w, data = d.r), 
  interval = "confidence", newdata = newd)
  d.r$est[i] <- pred[1]
  d.r$lwr[i] <- pred[2]
  d.r$upr[i] <- pred[3]
  }
  plot(d.l$cellmp, d.l$est, lty = 1, lwd = 2, col = "black", # xlim set here based on the parameter
  type = "l", xlim = my_xlim, ylim = c(min(cellval[cellmp <= 
  pmax & cellmp >= pmin]), max(cellval[cellmp <= 
  pmax & cellmp >= pmin])), xlab = NA, ylab = NA, 
  main = NA)
  lines(d.l$cellmp, d.l$lwr, lty = 2, lwd = 1, col = "black", 
  type = "l")
  lines(d.l$cellmp, d.l$upr, lty = 2, lwd = 1, col = "black", 
  type = "l")
  lines(d.r$cellmp, d.r$est, lty = 1, lwd = 2, col = "black", 
  type = "l")
  lines(d.r$cellmp, d.r$lwr, lty = 2, lwd = 1, col = "black", 
  type = "l")
  lines(d.r$cellmp, d.r$upr, lty = 2, lwd = 1, col = "black", 
  type = "l")
  points(cellmp, cellval, type = "p", pch = 20)
  }
  cmp <- cellmp
  cval <- cellval
  padzeros <- ceiling(bw/bin)
  jp <- j + 2 * padzeros
  if (padzeros >= 1) {
  cval <- c(rep(0, padzeros), cellval, rep(0, padzeros))
  cmp <- c(seq(l - padzeros * bin, l - bin, bin), cellmp, 
  seq(r + bin, r + padzeros * bin, bin))
  }
  dist <- cmp - cutpoint
  w <- 1 - abs(dist/bw)
  w <- ifelse(w > 0, w * (cmp < cutpoint), 0)
  w <- (w/sum(w)) * jp
  fhatl <- predict(lm(cval ~ dist, weights = w), newdata = data.frame(dist = 0))[[1]]
  w <- 1 - abs(dist/bw)
  w <- ifelse(w > 0, w * (cmp >= cutpoint), 0)
  w <- (w/sum(w)) * jp
  fhatr <- predict(lm(cval ~ dist, weights = w), newdata = data.frame(dist = 0))[[1]]
  thetahat <- log(fhatr) - log(fhatl)
  sethetahat <- sqrt((1/(rn * bw)) * (24/5) * ((1/fhatr) + 
  (1/fhatl)))
  z <- thetahat/sethetahat
  p <- 2 * pnorm(abs(z), lower.tail = FALSE)
  if (verbose) {
  cat("Log difference in heights is ", sprintf("%.3f", 
  thetahat), " with SE ", sprintf("%.3f", sethetahat), 
  "\n")
  cat("  this gives a z-stat of ", sprintf("%.3f", z), 
  "\n")
  cat("  and a p value of ", sprintf("%.3f", p), "\n")
  }
  if (ext.out) 
  return(list(theta = thetahat, se = sethetahat, z = z, 
  p = p, binsize = bin, bw = bw, cutpoint = cutpoint, 
  data = data.frame(cellmp, cellval)))
  else if (htest) {
  structure(list(statistic = c(z = z), p.value = p, method = "McCrary (2008) sorting test", 
  parameter = c(binwidth = bin, bandwidth = bw, cutpoint = cutpoint), 
  alternative = "no apparent sorting"), class = "htest")
  }
  else return(p)
}

3) запустите для проверки:

DCdensity2(x, 0)
DCdensity2(x, 0, my_xlim = c(-5, 5))
...