Я пытаюсь экспортировать модель Tensorflow, чтобы использовать ее в обслуживании Tensorflow. Это скрипт, который я использую:
import os
import tensorflow as tf
trained_checkpoint_prefix = '/home/ubuntu/checkpoint'
export_dir = os.path.join('m', '0')
loaded_graph = tf.Graph()
config=tf.ConfigProto(allow_soft_placement=True)
with tf.Session(graph=loaded_graph, config=config) as sess:
# Restore from checkpoint
loader = tf.train.import_meta_graph(trained_checkpoint_prefix + 'file.meta')
loader.restore(sess, tf.train.latest_checkpoint(trained_checkpoint_prefix))
# Create SavedModelBuilder class
# defines where the model will be exported
export_path_base = "/home/ubuntu/m"
export_path = os.path.join(
tf.compat.as_bytes(export_path_base),
tf.compat.as_bytes(str(0)))
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
batch_shape = (20, 256, 256, 3)
input_tensor = tf.placeholder(tf.float32, shape=batch_shape, name="X_content")
predictions_tf = tf.placeholder(tf.float32, shape=batch_shape, name='Y_output')
tensor_info_input = tf.saved_model.utils.build_tensor_info(input_tensor)
tensor_info_output = tf.saved_model.utils.build_tensor_info(predictions_tf)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'image': tensor_info_input},
outputs={'output': tensor_info_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'style_image':
prediction_signature,
})
builder.save(as_text=True)
Основная проблема - это выходная подпись (Foretions_tf). В этом случае, установив значение placeholder , я получаю сообщение об ошибке, говорящее о том, что его значение должно быть установлено при вызове модели из gRPC. Что я должен использовать вместо этого?
Я пытался
predictions_tf = tf.Variable(0, dtype=tf.float32, name="Y_output")
и
predictions_tf = tf.TensorInfo(dtype=tf.float32)
predictions_tf.name = "Y_output"
predictions_tf.dtype = tf.float32