С вашей структурой данных работать немного неудобно, вы можете указать str
или glimpse
, чтобы увидеть проблему, однако вы можете исправить это, как показано ниже, и затем построить ее.
> str(df)
'data.frame': 4 obs. of 2 variables:
$ costC :'data.frame': 4 obs. of 2 variables:
..$ x : num 1 2 3 NA
..$ freq: int 10 11 17 149
$ productsC:'data.frame': 4 obs. of 2 variables:
..$ x : num 1 2 3 NA
..$ freq: int 31 40 30 86
Код для составления графика:
library(ggplot2)
library(tidyverse)
df <- df %>% map(unnest) %>% bind_rows(.id="Name") %>% na.omit() #fixing the structure of column taken as a set of two separate columns
df %>%
ggplot(aes(x=Name, y= freq)) +
geom_col()
Я надеюсь, что это то, что ожидается, хотя я не совсем уверен в этом.
Входные данные даны :
df <- structure(list(costC = structure(list(x = c(1, 2, 3, NA), freq = c(10L,
11L, 17L, 149L)), .Names = c("x", "freq"), row.names = c(NA,
4L), class = "data.frame"), productsC = structure(list(x = c(1,
2, 3, NA), freq = c(31L, 40L, 30L, 86L)), .Names = c("x", "freq"
), row.names = c(NA, 4L), class = "data.frame")), .Names = c("costC",
"productsC"), row.names = c(NA, 4L), class = "data.frame")
выход
Добавлено после запроса OP:
Здесь я не удалил NA, а заменил их новым значением '4'. Чтобы взять относительную сумму по группам, я использовал cumsum
, а затем разделил на всю сумму по обеим группам, чтобы получить относительные частоты.
df <- df %>% map(unnest) %>% bind_rows(.id="Name")
df[is.na(df$x),"x"] <- 4
df %>%
group_by(Name) %>%
mutate(sum_Freq = sum(freq), cum_Freq = cumsum(freq)) %>%
filter(x == 3) %>%
mutate(new_x = cum_Freq*100/sum_Freq) %>%
ggplot(aes(x=Name, y = new_x)) +
geom_col()