Создание нескольких графиков на основе флажков в Shiny - PullRequest
0 голосов
/ 15 сентября 2018

Я пытаюсь сделать блестящее приложение.

Я хочу, чтобы мое приложение генерировало несколько графиков в зависимости от количества отмеченных флажков. Iris - это информационный фрейм, который имеет различные количественные переменные, и я пытаюсь динамически генерировать графики плотности 4 переменных, которые находятся в радужной оболочке. Ниже мой сервер и страница пользовательского интерфейса до сих пор.

library(shiny)
library(ggplot2)
library(tidyverse)


df<-iris[,colnames(iris)!="Species"]

ui<-fluidPage(

titlePanel("Density Plots of Quantitative Variables"),
sidebarLayout( sidebarPanel( sliderInput("bw","Slide to change bandwidth 
                                         of Plot",min=0.1,max=20,value=3,step=0.1,animate=TRUE),

                             checkboxGroupInput("variableinp","Choose variables",
                                                choices=colnames(df),selected = colnames(df)[1]),verbatimTextOutput("value")
),
mainPanel( plotOutput("densityplot"))
)
)


server<-function(input,output){

# observeEvent(input$variableinp, {
#      print((input$variableinp))
#  })

output$densityplot <- renderPlot({

    if(!is.null(input$variableinp)) {

        getoutandquant <- function(x) {
            q1<-quantile(x)[[2]]
            q3<-quantile(x)[[4]]
            IQR<-q3-q1

            out1<-q3+(1.5)*IQR
            out2<-q1-(1.5)*IQR

            #Finding the list of points which are outliers for a particular 
           variable.
            out<-x[x>out1]
            out2<-x[x<out2]
            outliers<-tibble(x=c(out,out2),y=0)

            return(outliers)
        }
        nplot<-length(input$variableinp)
        x<-input$variableinp

        for ( i in 1:nplot) {
            outlier<-getoutandquant(df[,x[i]])

        }    

        p1<-ggplot(df,aes_string(input$variableinp[i]))+
            stat_density(geom="line",adjust=input$bw)+ ylab("Density\n")
        p1+geom_point(data=outlier,aes(x,y),shape=23)
    }
})
}


shinyApp(ui=ui,server=server)

Ниже приведен мой вывод. Как видно, генерируется только один сюжет. С 2 флажками, отмеченными галочкой, я бы хотел 2 участка, с 3 флажками, 3 участками и так далее. :

Density Plots of variables

Может ли кто-нибудь дать мне подсказку или привести к тому, как я должен это сделать. Мои участки приносят пользу. Мне просто нужно создать несколько графиков, основываясь на количестве нажатых флажков.

1 Ответ

0 голосов
/ 15 сентября 2018

Попробуйте сохранить ваш ggplot вывод в списке, затем используйте do.call и grid.arrange, чтобы объединить все это в один график:

Попробуйте следующий код, он должен прекрасно работать: Вам нужно установить пакет gridExtra, чтобы объединить несколько ggplot.

library(shiny)
library(ggplot2)
library(tidyverse)
library(gridExtra)

df<-iris[,colnames(iris)!="Species"]

ui<-fluidPage(

  titlePanel("Density Plots of Quantitative Variables"),
  sidebarLayout( sidebarPanel( sliderInput("bw","Slide to change bandwidth 
                                           of Plot",min=0.1,max=20,value=3,step=0.1,animate=TRUE),

                               checkboxGroupInput("variableinp","Choose variables",
                                                  choices=colnames(df),selected = colnames(df)[1]),verbatimTextOutput("value")
  ),
  mainPanel( plotOutput("densityplot"))
  )
  )


server<-function(input,output){

  # observeEvent(input$variableinp, {
  #      print((input$variableinp))
  #  })

  output$densityplot <- renderPlot({

    if(!is.null(input$variableinp)) {

      getoutandquant <- function(x) {
        q1<-quantile(x)[[2]]
        q3<-quantile(x)[[4]]
        IQR<-q3-q1

        out1<-q3+(1.5)*IQR
        out2<-q1-(1.5)*IQR

        #Finding the list of points which are outliers for a particular 
        out<-x[x>out1]
        out2<-x[x<out2]
        outliers<-tibble(x=c(out,out2),y=0)

        return(outliers)
      }
      nplot<-length(input$variableinp)
      x<-input$variableinp

      p<-list()
      for ( i in 1:nplot) {
        outlier<-getoutandquant(df[,x[i]])
        p[[i]]<-ggplot(df,aes_string(input$variableinp[i]))+
          stat_density(geom="line",adjust=input$bw)+ ylab("Density\n")+
          geom_point(data=outlier,aes(x,y),shape=23)
      }    
      do.call(grid.arrange,p)
    }
  })
}


shinyApp(ui=ui,server=server)

Также, пожалуйста, выберите этот пост как лучший ответ, если он решил вашу проблему, спасибо миллион.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...