Я добился этого, выполнив следующий код в detect_object.py
import numpy as np
import tensorflow as tf
import sys
from PIL import Image
import cv2
from utils import label_map_util
from utils import visualization_utils as vis_util
# ------------------ Knife Model Initialization ------------------------------ #
knife_label_map = label_map_util.load_labelmap('training/labelmap.pbtxt')
knife_categories = label_map_util.convert_label_map_to_categories(
knife_label_map, max_num_classes=1, use_display_name=True)
knife_category_index = label_map_util.create_category_index(knife_categories)
knife_detection_graph = tf.Graph()
with knife_detection_graph.as_default():
knife_od_graph_def = tf.GraphDef()
with tf.gfile.GFile('inference_graph_3/frozen_inference_graph.pb', 'rb') as fid:
knife_serialized_graph = fid.read()
knife_od_graph_def.ParseFromString(knife_serialized_graph)
tf.import_graph_def(knife_od_graph_def, name='')
knife_session = tf.Session(graph=knife_detection_graph)
knife_image_tensor = knife_detection_graph.get_tensor_by_name('image_tensor:0')
knife_detection_boxes = knife_detection_graph.get_tensor_by_name(
'detection_boxes:0')
knife_detection_scores = knife_detection_graph.get_tensor_by_name(
'detection_scores:0')
knife_detection_classes = knife_detection_graph.get_tensor_by_name(
'detection_classes:0')
knife_num_detections = knife_detection_graph.get_tensor_by_name(
'num_detections:0')
# ---------------------------------------------------------------------------- #
# ------------------ General Model Initialization ---------------------------- #
general_label_map = label_map_util.load_labelmap('data/mscoco_label_map.pbtxt')
general_categories = label_map_util.convert_label_map_to_categories(
general_label_map, max_num_classes=90, use_display_name=True)
general_category_index = label_map_util.create_category_index(
general_categories)
general_detection_graph = tf.Graph()
with general_detection_graph.as_default():
general_od_graph_def = tf.GraphDef()
with tf.gfile.GFile('ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb', 'rb') as fid:
general_serialized_graph = fid.read()
general_od_graph_def.ParseFromString(general_serialized_graph)
tf.import_graph_def(general_od_graph_def, name='')
general_session = tf.Session(graph=general_detection_graph)
general_image_tensor = general_detection_graph.get_tensor_by_name(
'image_tensor:0')
general_detection_boxes = general_detection_graph.get_tensor_by_name(
'detection_boxes:0')
general_detection_scores = general_detection_graph.get_tensor_by_name(
'detection_scores:0')
general_detection_classes = general_detection_graph.get_tensor_by_name(
'detection_classes:0')
general_num_detections = general_detection_graph.get_tensor_by_name(
'num_detections:0')
# ---------------------------------------------------------------------------- #
def knife(image_path):
try:
image = cv2.imread(image_path)
image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = knife_session.run(
[knife_detection_boxes, knife_detection_scores,
knife_detection_classes, knife_num_detections],
feed_dict={knife_image_tensor: image_expanded})
classes = np.squeeze(classes).astype(np.int32)
scores = np.squeeze(scores)
boxes = np.squeeze(boxes)
for c in range(0, len(classes)):
class_name = knife_category_index[classes[c]]['name']
if class_name == 'knife' and scores[c] > .80:
confidence = scores[c] * 100
break
else:
confidence = 0.00
except:
print("Error occurred in knife detection")
confidence = 0.0 # Some error has occurred
return confidence
def general(image_path):
try:
image = cv2.imread(image_path)
image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = general_session.run(
[general_detection_boxes, general_detection_scores,
general_detection_classes, general_num_detections],
feed_dict={general_image_tensor: image_expanded})
classes = np.squeeze(classes).astype(np.int32)
scores = np.squeeze(scores)
boxes = np.squeeze(boxes)
object_name = []
object_score = []
for c in range(0, len(classes)):
class_name = general_category_index[classes[c]]['name']
if scores[c] > .30: # If confidence level is good enough
object_name.append(class_name)
object_score.append(str(scores[c] * 100)[:5])
except:
print("Error occurred in general detection")
object_name = ['']
object_score = ['']
return object_name, object_score
if __name__ == '__main__':
print(' in main')
Я могу сделать
import detect_object
detect_object.knife("image.jpg") # to detect whether knife is present in image(this is custom trained model)
detect_object.general("image.jpg") # to detect those 90 objects from TF API
Я знаю, что в TF API есть модель ножа, но она не настолько точна, поэтому я переобучил ее только для ножа. Наконец у меня есть две модели
1. Первая модель, чтобы обнаружить только нож,
2. Вторая модель - обнаружение общего объекта как обычно