Возможно, я неправильно понял ваш вопрос, извините. Я не думаю, что вам нужно использовать SciPy. NumPy имеет функцию наименьших квадратов.
#!/usr/bin/env python
from numpy.linalg.linalg import lstsq
def find_coefficients(data, exponents):
X = tuple((tuple((pow(x,p) for p in exponents)) for (x,y) in data))
y = tuple(((y) for (x,y) in data))
x, resids, rank, s = lstsq(X,y)
return x
if __name__ == "__main__":
data = tuple((
(1.47, 52.21),
(1.50, 53.12),
(1.52, 54.48),
(1.55, 55.84),
(1.57, 57.20),
(1.60, 58.57),
(1.63, 59.93),
(1.65, 61.29),
(1.68, 63.11),
(1.70, 64.47),
(1.73, 66.28),
(1.75, 68.10),
(1.78, 69.92),
(1.80, 72.19),
(1.83, 74.46)
))
print find_coefficients(data, range(3))
Это вернет [128.81280358 -143.16202286 61.96032544].
>>> x=1.47 # the first of the input data
>>> 128.81280358 + -143.16202286*x + 61.96032544*(x**2)
52.254697219095988
0,04, неплохо