У меня проблема с SciKit Learn.
Я делаю действительно простую задачу линейной регрессии. Основываясь на исходных значениях «Количество часов обучения» и итоговой оценке, я хочу иметь возможность оценить оценку учащихся по времени их обучения.
In [1]: import pandas as pd
In [2]: path = 'Desktop/hoursgrades.csv'
In [3]: df = pd.read_csv(path)
In [4]: X = df['Hours Studied']
In [5]: y = df['Grade']
In [6]: training_data_in = list()
In [7]: training_data_out = list()
In [8]: training_data_in.append(X)
In [9]: training_data_out.append(y)
In [11]: from sklearn.linear_model import LinearRegression
In [12]: model = LinearRegression(n_jobs =-1)
In [13]: model.fit(X = training_data_in, y = training_data_out)
Out[13]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=-1, normalize=False)
В этом примере DF выглядит так:
In [16]: df
Out[16]:
Hours Studied Grade
0 1 10.0
1 2 20.0
2 3 30.0
3 4 40.0
4 5 50.0
5 6 60.0
6 7 70.0
7 8 80.0
8 9 90.0
9 10 100.0
И Х выглядит так:
In [17]: X
Out[17]:
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
Name: Hours Studied, dtype: int64
И у выглядит так:
In [18]: y
Out[18]:
0 10.0
1 20.0
2 30.0
3 40.0
4 50.0
5 60.0
6 70.0
7 80.0
8 90.0
9 100.0
Name: Grade, dtype: float64
Пока все хорошо, кажется, он принял все, что я вложил до сих пор. Итак, теперь я хочу протестировать модель с некоторыми входными данными. Итак, я хочу сказать, что количество часов, которые изучал этот студент, составляет 5, а модель сообщает мне ожидаемый балл.
Но когда я помещаю это в модель, я получаю следующую ошибку.
Кто-нибудь может посоветовать?
In [14]: studied_hour = [[5]]
In [15]: outcome = model.predict(X = studied_hour)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-15-6fdab4ae2efd> in <module>()
----> 1 outcome = model.predict(X = studied_hour)
~/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/base.py in predict(self, X)
254 Returns predicted values.
255 """
--> 256 return self._decision_function(X)
257
258 _preprocess_data = staticmethod(_preprocess_data)
~/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/base.py in _decision_function(self, X)
239 X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
240 return safe_sparse_dot(X, self.coef_.T,
--> 241 dense_output=True) + self.intercept_
242
243 def predict(self, X):
~/anaconda3/lib/python3.7/site-packages/sklearn/utils/extmath.py in safe_sparse_dot(a, b, dense_output)
138 return ret
139 else:
--> 140 return np.dot(a, b)
141
142
ValueError: shapes (1,1) and (10,10) not aligned: 1 (dim 1) != 10 (dim 0)
Я должен добавить:
In [39]: X.shape
Out[39]: (10,)
In [40]: y.shape
Out[40]: (10,)