Я пытаюсь использовать пакет systemfit для оценки эконометрической модели. Я продолжаю получать error: Error in eval(predvars, data, env) : object 'gdp_gro' not found
. Дело в том, что gdp_gro
определенно находится в моем наборе данных.
Я попытался найти эту ошибку в Google, но не смог найти решение. Основываясь на других вопросах о Stackoverflow и других местах, я думаю, что проблема заключается в том, как R обрабатывает среды формул. Я был бы признателен за некоторые рекомендации о том, почему мой код не работает и как это исправить. Большое спасибо.
Я прикрепляю набор данных и репрекс (ниже):
library(systemfit)
#> Loading required package: Matrix
#> Loading required package: car
#> Loading required package: carData
#> Loading required package: lmtest
#> Loading required package: zoo
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#> as.Date, as.Date.numeric
#>
#> Please cite the 'systemfit' package as:
#> Arne Henningsen and Jeff D. Hamann (2007). systemfit: A Package for Estimating Systems of Simultaneous Equations in R. Journal of Statistical Software 23(4), 1-40. http://www.jstatsoft.org/v23/i04/.
#>
#> If you have questions, suggestions, or comments regarding the 'systemfit' package, please use a forum or 'tracker' at systemfit's R-Forge site:
#> https://r-forge.r-project.org/projects/systemfit/
#Prepare a new list
DF = list()
#Splitting the data in list elements by years
for (i in seq(from = 1, by =1, to =length(unique(as.numeric(df$year))))){
DF[[i]] <- df[df$year == unique(as.numeric(df$year))[i],]
}
#> Error: object of type 'closure' is not subsettable
Equation = list()
Inststruments = list()
#### SPECIFCIATION OF EQUATIONS
for (i in seq(from = 1, by =1, to =length(unique(as.numeric(df$year))))){
#Automatically pick up the instruments
instruments <- select_vars(colnames(as.data.frame(DF[i])), ends_with("_I", ignore.case = FALSE))
#Variables picked out automatically
variables <- colnames(as.data.frame(DF[i]))[!colnames(as.data.frame(DF[i])) %in% c(instruments, "gdp_gro")]
#Automatizing the equation specification
Equation[[i]] <- with(DF[i] , as.formula(paste("gdp_gro ~ ", paste(variables, collapse="+"))) )
Inststruments[[i]] <- with(DF[i] , as.formula(paste("~ ", paste(instruments, collapse="+"))) )
}
#> Error: object of type 'closure' is not subsettable
#Finally run the key regressions
reg <- systemfit(Equation, method = "3SLS", inst = Inststruments, methodResidCov = "noDfCor" )
#> Error in formula[[i]]: subscript out of bounds
Частичные данные (генерируемые с помощью dput):
structure(list(country_code = c("AUS", "AUS", "AUS", "AUS", "AUT",
"AUT", "AUT", "AUT", "BEL", "BEL", "BEL", "BEL", "BGR", "BGR",
"BGR", "BGR"), year = c(1995L, 2000L, 2005L, 2010L, 1995L, 2000L,
2005L, 2010L, 1995L, 2000L, 2005L, 2010L, 1995L, 2000L, 2005L,
2010L), tot_lif = c(0.0128486367909746, 0.0126208212768577, 0.0123698898778096,
0.0122406329302881, 0.0130432016288096, 0.0127997002997003, 0.0126053003750845,
0.0124099521762818, 0.0130139312547017, 0.0128663779576979, 0.0126613550738064,
0.0124714828897338, 0.0140739189685534, 0.0139541215710299, 0.013781512605042,
0.0136031851360319), cap_aset = c(NA, 6.9, 6.9, 5.43, NA, 5.2,
4.8, 7.49276, NA, 2.8, 2.7, 4.96531, NA, 15.3, 7.4, 10.4677),
cb_assets = c(3.06318, 2.46202, 2.20076, 3.33956, 0.399895,
0.536933, 0.551538, 0.815212, 0.972776, 0.466959, 0.248117,
0.823367, 7.90828, 8.51751, 3.15831, 0.095416), tot_fert = c(1.822,
1.756, 1.807, 1.928, 1.42, 1.36, 1.41, 1.44, 1.56, 1.67,
1.76, 1.86, 1.23, 1.26, 1.37, 1.57), nat_res = c(2.09714172369929,
3.51179102271941, 7.72238072354596, 8.01628506180971, 0.11853075155191,
0.150961988690622, 0.206953989580903, 0.216777594515187,
0.0223053533152314, 0.0203362079028292, 0.0177518400351335,
0.019336002220052, 1.47167055527445, 1.33790542432826, 2.31972541945117,
2.08046786610067), trad_term = c(NA, 100, 131.0849232, 178.9001645,
NA, 100, 95.91930131, 92.25883781, NA, 100, 98.77006835,
96.59919868, NA, 100, 84.20837461, 125.8550667), gov_cons = c(0.1471103005,
0.1474746565, 0.151790273666667, NA, 0.149812934333333, 0.154511682833333,
0.1511594605, NA, 0.171062330333333, 0.180379932166667, 0.174480045833333,
NA, 0.289015879333333, 0.323738674333333, 0.276189208166667,
NA), gdp_gro = c(3.8293687531652, 3.94318908229896, 3.19031634041626,
2.05294200395332, 2.66798366552709, 3.37572197324998, 2.24406681223554,
1.83709459152502, 2.3847572377606, 3.63365201492995, 2.09427270847185,
2.74421327182894, 2.86018944148833, 4.94055377635733, 7.12351107638302,
1.32408780093829), gross_inv = c(0.266632934333333, 0.260118643666667,
0.300801128, 0.264703502, 0.335587352333333, 0.260061338333333,
0.270549208, 0.287363499333333, 0.2805128, 0.246921166666667,
0.308350493333333, 0.324811398666667, 0.0818940103333333,
0.136577869666667, 0.236514484, 0.19643417), gdp_cap_1 = c(0.00192864730372135,
0.00222430451645368, 0.00250264618548625, 0.00273814839048662,
0.0027345490098763, 0.0032819778735874, 0.00334421790851598,
0.0037646138629738, NA, 0.00344158786452203, 0.00350312141684792,
0.00395886153650055, 0.000862928006781417, 0.000734707837639529,
0.000935582564325206, 0.0013229694175178), gdp_cap_2 = c(0.00191622588648934,
0.00221469960943122, 0.00254717484680898, 0.00285420952389829,
0.00252904621475959, 0.00305993171114882, 0.00329798344078102,
0.00354070266940731, NA, 0.00289716367632824, 0.00329402073984151,
0.00365521257262544, 0.000834744862348611, 0.000765775240349386,
0.000991473707456532, 0.0012880711598984), econ_open = c(1.11564470333333,
1.07036188216667, 1.31764187416667, NA, 1.19112350533333,
1.13605700933333, 1.37068624266667, NA, 1.14728215333333,
1.1020498675, 1.34182663783333, NA, 1.01287280516667, 0.982563148,
1.2535847325, NA), demo_2 = c(0.0156360833333333, NA, NA,
0.0272981816666667, 0.0162439233333333, 0.016152265, 0.0163356866666667,
0.0192567566666667, 0.0179158466666667, 0.02126817, 0.023894505,
0.0293736833333333, NA, 0.05795811, 0.0639238566666667, 0.052836915
), male_edu_1 = c(5.81, 5.82, 5.84, 5.87, 4.09, 3.86, 3.86,
3.87, 5.53, 5.59, 5.63, 5.59, 5.38, 5.43, 5.9, 6.3), male_edu_2 = c(4.78,
4.76, 4.81, 4.61, 5.48, 5.77, 6.08, 6.28, 3.79, 3.96, 4.31,
4.38, 2.87, 3.11, 3.72, 4.31), male_edu_3 = c(0.88, 0.78,
0.93, 1.12, 0.35, 0.48, 0.64, 0.71, 0.8, 0.88, 0.95, 1.05,
0.53, 0.58, 0.61, 0.71), male_edu_4 = c(11.48, 11.35, 11.58,
11.6, 9.92, 10.11, 10.58, 10.86, 10.12, 10.43, 10.88, 11.02,
8.79, 9.13, 10.23, 11.32), tot_lif_I = c(0.0128682464785598,
0.0127095722174518, 0.012465515344814, 0.0122834370967119,
0.0131404621173837, 0.0128830665052315, 0.012685638515979,
0.0124510515974525, 0.0130783197148458, 0.0129052789260619,
0.0127617321099324, 0.0125262669490894, 0.0140154543995514,
0.0140966755510497, 0.0138573536026272, 0.0136964325672041
), tot_fert_I = c(1.822, 1.756, 1.807, 1.928, 1.42, 1.36,
1.41, 1.44, 1.56, 1.67, 1.76, 1.86, 1.23, 1.26, 1.37, 1.57
), gov_cons_I = c(0.147556354666667, 0.147787615333333, 0.14822341,
0.154233063333333, 0.143237327333333, 0.154914428666667,
0.150818939, 0.160776774333333, 0.167895371666667, 0.174698651,
0.174371118333333, 0.185355464666667, 0.318261792333333,
0.319208641666667, 0.313319266, 0.274927805), gross_inv_I = c(0.271324028333333,
0.263693382333333, 0.298435052333333, 0.269873092666667,
0.342670599333333, 0.287529100666667, 0.262940883333333,
0.273333341, 0.290991584333333, 0.259098499666667, 0.269275173666667,
0.313822090666667, 0.0746616733333333, 0.12165235, 0.171543354666667,
0.245303109333333), gdp_cap_1_I = c(0.00192864730372135,
0.00222430451645368, 0.00250264618548625, 0.00273814839048662,
0.0027345490098763, 0.0032819778735874, 0.00334421790851598,
0.0037646138629738, NA, 0.00344158786452203, 0.00350312141684792,
0.00395886153650055, 0.000862928006781417, 0.000734707837639529,
0.000935582564325206, 0.0013229694175178), gdp_cap_2_I = c(0.00191622588648934,
0.00221469960943122, 0.00254717484680898, 0.00285420952389829,
0.00252904621475959, 0.00305993171114882, 0.00329798344078102,
0.00354070266940731, NA, 0.00289716367632824, 0.00329402073984151,
0.00365521257262544, 0.000834744862348611, 0.000765775240349386,
0.000991473707456532, 0.0012880711598984), econ_open_I = c(1.08680443966667,
1.05545339966667, 1.146271606, 1.401552578, 1.17984314766667,
1.122572442, 1.21375773333333, 1.43774867033333, 1.14471817,
1.08343706533333, 1.18125647333333, 1.41352349533333, 1.00123712466667,
0.956378658666667, 1.057932824, 1.33654979833333), demo_2_I = c(0.0174405,
0.0141582, NA, 0.02649142, 0.01485111, 0.01894116, 0.01685453,
0.01725761, 0.01650168, 0.01752877, 0.02481076, 0.02306411,
0.0366033, 0.0530792, 0.06323963, 0.05811036)), row.names = c(NA,
16L), class = "data.frame")