Вы можете векторизовать преобразование так, чтобы все пиксели R, G и B были преобразованы одновременно с помощью:
def yuv_vec(images):
R, G, B = images[:, :, :, 0], images[:, :, :, 1], images[:, :, :, 2]
y = (0.299 * R + 0.587 * G + 0.114 * B) / 127.5 - 1
u = (0.493 * (B - y)) / 127.5 - 1
v = (0.887 * (R - y)) / 127.5 - 1
yuv_img = np.empty(images.shape)
yuv_img[:, :, :, 0] = y
yuv_img[:, :, :, 1] = u
yuv_img[:, :, :, 2] = v
return yuv_img
Чтобы оценить время выполнения, я покажу короткую реализацию вложенного циклаyuv функция, показанная в вопросе:
def yuv(_pixel):
R, G, B = _pixel[0], _pixel[1], _pixel[2]
y = (0.299 * R + 0.587 * G + 0.114 * B) / 127.5 - 1
u = (0.493 * (B - Y)) / 127.5 - 1
v = (0.887 * (R - Y)) / 127.5 - 1
return np.array([y, u, v])
def yuvloop(imgs):
yuvimg = np.empty(imgs.shape)
for n in range(imgs.shape[0]):
for i in range(imgs.shape[1]):
for j in range(imgs.shape[2]):
yuvimg[n, i, j] = yuv(imgs[n, i, j])
return yuvimg
Некоторые сравнения скорости:
imgs = np.random.randint(0, 256, size=(100, 50, 100, 3))
%timeit yuvloop(imgs)
# Out: 8.79 s ± 265 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
% timeit np.apply_along_axis(yuv, -1, imgs)
# Out: 9.92 s ± 360 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit yuv_vec(imgs)
# Out: 34.4 ms ± 385 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Так что это 256 раз быстрее , чем зацикливание на пикселях.Использование np.apply_along_axis
кажется еще медленнее.Результат всех трех одинаков.
Я уменьшил размер тестового образца до 100 изображений, в противном случае тестирование было бы слишком медленным.