Я пишу код логического вывода для загрузки преобразованной модели Pytorch (модель тегирования из imagenet) в C ++.Я использовал c ++ Pytorch API внешнего интерфейса.Мой код работает правильно на CPU, но не работает на GPU.Проблема в том, что когда я хочу напечатать окончательные результаты, я получаю ошибку Ошибка сегментации (ядро сброшено).Я должен передать переменные "top_scores_a" и "top_idx_a" в ЦПУ, но я не знаю, как это сделать.
Я загружаю модель и входное изображение в графический процессор.Ошибка произошла в следующей части:
for (int i = 0; i < 2; ++i)
{
// int idx = top_idxs_a[i];
std::cout << "top-" << i+1 << " label: ";
// std::cout << labels[idx] << ", score: " << top_scores_a[i] << std::endl;
}
Полный код доступен здесь:
#include "torch/script.h"
#include <torch/script.h>
#include <torch/torch.h>
#include <ATen/Tensor.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <time.h>
#include <iostream>
#include <memory>
#include <cuda.h>
#include <cuda_runtime_api.h>
using namespace std;
// __global__
int main(int argc, const char* argv[]) {
//// asign gpu
torch::Device device(torch::kCPU);
clock_t tStart = clock();
//// check cuda visibility
if (torch::cuda::is_available())
{
std::cout << "CUDA is available! Run on GPU." << std::endl;
device = torch::kCUDA;
}
if (argc != 4) {
cout << "ptcpp path/to/scripts/model.pt path/to/image.jpg path/to/label.txt\n";
return -1;
}
cout << "Will load from " << argv[1] << endl;
shared_ptr<torch::jit::script::Module> module = torch::jit::load(argv[1]);
module->to(device); // on gpu
if (module == nullptr) {
cerr << "model load error from " << argv[1] << endl;
}
cout << "Model load ok.\n";
// load image and transform
cv::Mat image;
image = cv::imread(argv[2], 1);
cv::Mat image_rgb;
cv::cvtColor(image, image_rgb, CV_BGR2RGB);
cv::Mat image_resized;
cv::resize(image_rgb, image_resized, cv::Size(224, 224));
cv::Mat image_resized_float;
image_resized.convertTo(image_resized_float, CV_32F, 1.0/255);
auto img_tensor = torch::CPU(torch::kFloat32).tensorFromBlob(image_resized_float.data, {1, 224, 224, 3}).to(device); // work correctly
cout << "img tensor loaded..\n";
img_tensor = img_tensor.permute({0, 3, 1, 2});
img_tensor[0][0] = img_tensor[0][0].sub(0.485).div(0.229);
img_tensor[0][1] = img_tensor[0][1].sub(0.456).div(0.224);
img_tensor[0][2] = img_tensor[0][2].sub(0.406).div(0.225);
auto img_var = torch::autograd::make_variable(img_tensor, false);
vector<torch::jit::IValue> inputs;
inputs.push_back(img_var);
torch::Tensor out_tensor = module->forward(inputs).toTensor();
// load labels
vector<string> labels;
ifstream ins;
ins.open(argv[3]);
string line;
while (getline(ins, line))
{
labels.push_back(line);
}
std::tuple<torch::Tensor,torch::Tensor> result = out_tensor.sort(-1, true); //-1
torch::Tensor top_scores = std::get<0>(result)[0];
torch::Tensor top_idxs = std::get<1>(result)[0].toType(torch::kInt32);
auto top_scores_a = top_scores.accessor<float,1>();
auto top_idxs_a = top_idxs.accessor<int,1>();
for (int i = 0; i < 2; ++i)
{
int idx = top_idxs_a[i];
std::cout << "top-" << i+1 << " label: ";
std::cout << labels[idx] << ", score: " << top_scores_a[i] << std::endl;
}
float tend = clock();
printf("Time taken: %.2fs\n", (double)(tend - tStart)/CLOCKS_PER_SEC);
return 0;
}