Используйте панд, это однострочный:
import pandas as pd
solution = pd.date_range(start=date_min , end=date_max, freq='1H')
print(solution)
DatetimeIndex(['2018-09-16 00:00:00', '2018-09-16 01:00:00',
'2018-09-16 02:00:00', '2018-09-16 03:00:00',
'2018-09-16 04:00:00', '2018-09-16 05:00:00',
'2018-09-16 06:00:00', '2018-09-16 07:00:00',
'2018-09-16 08:00:00', '2018-09-16 09:00:00',
'2018-09-16 10:00:00', '2018-09-16 11:00:00',
'2018-09-16 12:00:00', '2018-09-16 13:00:00',
'2018-09-16 14:00:00', '2018-09-16 15:00:00',
'2018-09-16 16:00:00', '2018-09-16 17:00:00',
'2018-09-16 18:00:00', '2018-09-16 19:00:00',
'2018-09-16 20:00:00', '2018-09-16 21:00:00',
'2018-09-16 22:00:00', '2018-09-16 23:00:00',
'2018-09-17 00:00:00'],
dtype='datetime64[ns]', freq='H')
Если вы хотите преобразовать из pandas timestamp
обратно в datetime
, выполните:
[timestamp.to_pydatetime() for timestamp in solution]
[datetime.datetime(2018, 9, 16, 0, 0), datetime.datetime(2018, 9, 16, 1, 0), datetime.datetime(2018, 9, 16, 2, 0), datetime.datetime(2018, 9, 16, 3, 0), datetime.datetime(2018, 9, 16, 4, 0), datetime.datetime(2018, 9, 16, 5, 0), datetime.datetime(2018, 9, 16, 6, 0), datetime.datetime(2018, 9, 16, 7, 0), datetime.datetime(2018, 9, 16, 8, 0), datetime.datetime(2018, 9, 16, 9, 0), datetime.datetime(2018, 9, 16, 10, 0), datetime.datetime(2018, 9, 16, 11, 0), datetime.datetime(2018, 9, 16, 12, 0), datetime.datetime(2018, 9, 16, 13, 0), datetime.datetime(2018, 9, 16, 14, 0), datetime.datetime(2018, 9, 16, 15, 0), datetime.datetime(2018, 9, 16, 16, 0), datetime.datetime(2018, 9, 16, 17, 0), datetime.datetime(2018, 9, 16, 18, 0), datetime.datetime(2018, 9, 16, 19, 0), datetime.datetime(2018, 9, 16, 20, 0), datetime.datetime(2018, 9, 16, 21, 0), datetime.datetime(2018, 9, 16, 22, 0), datetime.datetime(2018, 9, 16, 23, 0), datetime.datetime(2018, 9, 17, 0, 0)]
Чтобы преобразовать вуказанный вами формат строки:
[timestamp.to_pydatetime().strftime('%Y-%m-%d %H') for timestamp in solution]
['2018-09-16 00', '2018-09-16 01', '2018-09-16 02', '2018-09-16 03', '2018-09-16 04', '2018-09-16 05', '2018-09-16 06', '2018-09-16 07', '2018-09-16 08', '2018-09-16 09', '2018-09-16 10', '2018-09-16 11', '2018-09-16 12', '2018-09-16 13', '2018-09-16 14', '2018-09-16 15', '2018-09-16 16', '2018-09-16 17', '2018-09-16 18', '2018-09-16 19', '2018-09-16 20', '2018-09-16 21', '2018-09-16 22', '2018-09-16 23', '2018-09-17 00']