Отвечая на ваш главный вопрос, водораздел не удаляет отдельные объекты. Водораздел работал нормально в вашем алгоритме. Он получает предопределенные метки и выполняет сегментацию соответственно.
Проблема заключалась в том, что пороговое значение, которое вы установили для преобразования расстояния, было слишком высоким, и оно удаляло слабый сигнал из отдельных объектов, тем самым предотвращая маркировку и отправку объектов в алгоритм водораздела.
Причиной слабого сигнала преобразования расстояния была неправильная сегментация на этапе сегментации цвета и сложность установки единого порога для удаления шума и извлечения сигнала.
Чтобы исправить это, нам нужно выполнить правильную сегментацию цвета и использовать адаптивный порог вместо единственного порога при сегментировании сигнала преобразования расстояния.
Вот код, который я изменил. Я включил метод цветовой сегментации @ user1269942 в коде. Дополнительное объяснение в коде.
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import label
import urllib.request
# https://stackoverflow.com/a/14617359/7690982
def segment_on_dt(a, img, img_gray):
# Added several elliptical structuring element for better morphology process
struct_big = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
struct_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
# increase border size
border = cv2.dilate(img, struct_big, iterations=5)
border = border - cv2.erode(img, struct_small)
dt = cv2.distanceTransform(img, cv2.DIST_L2, 3)
dt = ((dt - dt.min()) / (dt.max() - dt.min()) * 255).astype(np.uint8)
# blur the signal lighty to remove noise
dt = cv2.GaussianBlur(dt,(7,7),-1)
# Adaptive threshold to extract local maxima of distance trasnform signal
dt = cv2.adaptiveThreshold(dt, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, -9)
#_ , dt = cv2.threshold(dt, 2, 255, cv2.THRESH_BINARY)
# Morphology operation to clean the thresholded signal
dt = cv2.erode(dt,struct_small,iterations = 1)
dt = cv2.dilate(dt,struct_big,iterations = 10)
plt.imshow(dt)
plt.show()
# Labeling
lbl, ncc = label(dt)
lbl = lbl * (255 / (ncc + 1))
# Completing the markers now.
lbl[border == 255] = 255
plt.imshow(lbl)
plt.show()
lbl = lbl.astype(np.int32)
cv2.watershed(a, lbl)
print("[INFO] {} unique segments found".format(len(np.unique(lbl)) - 1))
lbl[lbl == -1] = 0
lbl = lbl.astype(np.uint8)
return 255 - lbl
# Open Image
resp = urllib.request.urlopen("https://i.stack.imgur.com/YUgob.jpg")
img = np.asarray(bytearray(resp.read()), dtype="uint8")
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
## Yellow slicer
# blur to remove noise
img = cv2.blur(img, (9,9))
# proper color segmentation
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, (0, 140, 160), (35, 255, 255))
#mask = cv2.inRange(img, (0, 0, 0), (55, 255, 255))
imask = mask > 0
slicer = np.zeros_like(img, np.uint8)
slicer[imask] = img[imask]
# Image Binarization
img_gray = cv2.cvtColor(slicer, cv2.COLOR_BGR2GRAY)
_, img_bin = cv2.threshold(img_gray, 140, 255,
cv2.THRESH_BINARY)
plt.imshow(img_bin)
plt.show()
# Morphological Gradient
# added
cv2.morphologyEx(img_bin, cv2.MORPH_OPEN,cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)),img_bin,(-1,-1),10)
cv2.morphologyEx(img_bin, cv2.MORPH_ERODE,cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)),img_bin,(-1,-1),3)
plt.imshow(img_bin)
plt.show()
# Segmentation
result = segment_on_dt(img, img_bin, img_gray)
plt.imshow(np.hstack([result, img_gray]), cmap='Set3')
plt.show()
# Final Picture
result[result != 255] = 0
result = cv2.dilate(result, None)
img[result == 255] = (0, 0, 255)
plt.imshow(result)
plt.show()
Окончательные результаты:
124 Уникальных предметов найдено.
Был найден дополнительный предмет, потому что один из предметов был разделен на 2.
При правильной настройке параметров вы можете получить точное число, которое вы ищете. Но я бы посоветовал приобрести лучшую камеру.