Я хочу визуализировать свои фильтры CNN на каждом слое. Я пишу код для этого, но это дает мне некоторую ошибку. Я хочу видеть изображения фильтров каждого слоя, а также хочу видеть тепловые карты области, которую моя нейронная сеть использует больше всего, чтобы предсказать конкретную метку. Делая это, я могу понять работу моего cnn и выполнить дальнейшую работу над моей моделью для лучших результатов
Я искал его в Google, но нашел, что в основном размещен в теории, но мне нужно увидеть код для решения
x = Conv2D(64,(3,3),strides = (1,1),name='layer_conv1',padding='same')(input)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2,2),name='maxPool1')(x)
x = Conv2D(64,(3,3),strides = (1,1),name='layer_conv2',padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2,2),name='maxPool2')(x)
x = Conv2D(32,(3,3),strides = (1,1),name='conv3',padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2,2),name='maxPool3')(x)
x = Flatten()(x)
x = Dense(64,activation = 'relu',name='fc0')(x)
x = Dropout(0.25)(x)
x = Dense(32,activation = 'relu',name='fc1')(x)
x = Dropout(0.25)(x)
x = Dense(2,activation = 'softmax',name='fc2')(x)
model = Model(inputs = input,outputs = x,name='Predict')
a=np.expand_dims( X_train[10],axis=0)
a.shape
from keras.models import Model
layer_outputs = [layer.output for layer in model.layers]
activation_model = Model(inputs=model.input, outputs=layer_outputs)
activations = activation_model.predict(a)
Я получаю эту ошибку
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-249-119bf7ea835a> in <module>()
2 layer_outputs = [layer.output for layer in model.layers]
3 activation_model = Model(inputs=model.input, outputs=layer_outputs)
----> 4 activations = activation_model.predict(a)
5
6
/opt/conda/lib/python3.6/site-packages/Keras-2.2.4-py3.6.egg/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks)
1185 verbose=verbose,
1186 steps=steps,
-> 1187 callbacks=callbacks)
1188
1189 def train_on_batch(self, x, y,
/opt/conda/lib/python3.6/site-packages/Keras-2.2.4-py3.6.egg/keras/engine/training_arrays.py in predict_loop(model, f, ins, batch_size, verbose, steps, callbacks)
320 batch_logs = {'batch': batch_index, 'size': len(batch_ids)}
321 callbacks._call_batch_hook('predict', 'begin', batch_index, batch_logs)
--> 322 batch_outs = f(ins_batch)
323 batch_outs = to_list(batch_outs)
324 if batch_index == 0:
/opt/conda/lib/python3.6/site-packages/Keras-2.2.4-py3.6.egg/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2919 return self._legacy_call(inputs)
2920
-> 2921 return self._call(inputs)
2922 else:
2923 if py_any(is_tensor(x) for x in inputs):
/opt/conda/lib/python3.6/site-packages/Keras-2.2.4-py3.6.egg/keras/backend/tensorflow_backend.py in _call(self, inputs)
2873 feed_symbols,
2874 symbol_vals,
-> 2875 session)
2876 if self.run_metadata:
2877 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
/opt/conda/lib/python3.6/site-packages/Keras-2.2.4-py3.6.egg/keras/backend/tensorflow_backend.py in _make_callable(self, feed_arrays, feed_symbols, symbol_vals, session)
2825 callable_opts.run_options.CopyFrom(self.run_options)
2826 # Create callable.
-> 2827 callable_fn = session._make_callable_from_options(callable_opts)
2828 # Cache parameters corresponding to the generated callable, so that
2829 # we can detect future mismatches and refresh the callable.
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in _make_callable_from_options(self, callable_options)
1469 """
1470 self._extend_graph()
-> 1471 return BaseSession._Callable(self, callable_options)
1472
1473
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in __init__(self, session, callable_options)
1423 with errors.raise_exception_on_not_ok_status() as status:
1424 self._handle = tf_session.TF_SessionMakeCallable(
-> 1425 session._session, options_ptr, status)
1426 finally:
1427 tf_session.TF_DeleteBuffer(options_ptr)
/opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: input_14:0 is both fed and fetched.
Я попытался удалить несколько слоев и добавить слой, но это мне не помогло. Я нашел очень меньше кода в Google.