Я наконец преуспел в этом. Я почти уверен, что есть лучший способ сделать это, но по крайней мере это работает:
import numpy as np
import numpy.random
import matplotlib.pyplot as plt
# To generate some test data
x = np.random.randn(500)
y = np.random.randn(500)
XY = np.stack((x,y),axis=-1)
def selection(XY, limitXY=[[-2,+2],[-2,+2]]):
XY_select = []
for elt in XY:
if elt[0] > limitXY[0][0] and elt[0] < limitXY[0][1] and elt[1] > limitXY[1][0] and elt[1] < limitXY[1][1]:
XY_select.append(elt)
return np.array(XY_select)
XY_select = selection(XY, limitXY=[[-2,+2],[-2,+2]])
xAmplitudes = np.array(XY_select)[:,0]#your data here
yAmplitudes = np.array(XY_select)[:,1]#your other data here
fig = plt.figure() #create a canvas, tell matplotlib it's 3d
ax = fig.add_subplot(111, projection='3d')
hist, xedges, yedges = np.histogram2d(x, y, bins=(7,7), range = [[-2,+2],[-2,+2]]) # you can change your bins, and the range on which to take data
# hist is a 7X7 matrix, with the populations for each of the subspace parts.
xpos, ypos = np.meshgrid(xedges[:-1]+xedges[1:], yedges[:-1]+yedges[1:]) -(xedges[1]-xedges[0])
xpos = xpos.flatten()*1./2
ypos = ypos.flatten()*1./2
zpos = np.zeros_like (xpos)
dx = xedges [1] - xedges [0]
dy = yedges [1] - yedges [0]
dz = hist.flatten()
cmap = cm.get_cmap('jet') # Get desired colormap - you can change this!
max_height = np.max(dz) # get range of colorbars so we can normalize
min_height = np.min(dz)
# scale each z to [0,1], and get their rgb values
rgba = [cmap((k-min_height)/max_height) for k in dz]
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color=rgba, zsort='average')
plt.title("X vs. Y Amplitudes for ____ Data")
plt.xlabel("My X data source")
plt.ylabel("My Y data source")
plt.savefig("Your_title_goes_here")
plt.show()
Я использую этот пример , но я изменил его, потому что он ввел смещение. Результат таков:
![enter image description here](https://i.stack.imgur.com/3KNnX.png)