Вот полный пример той интерполяции, которую вы пытаетесь выполнить.В качестве примера я использовал данные emission
с формой (10, 20)
и данные scale
с формой (5, 10)
.Он использует scipy.interpolate.RectBivariateSpline
, который является рекомендуемым методом для интерполяции на обычных сетках:
import scipy.interpolate as sci
def latlon(res):
return (np.arange(res)*(180/res) - 90,
np.arange(2*res)*(360/(2*res)) - 180)
lat_fine,lon_fine = latlon(10)
emission = np.ones(10*20).reshape(10,20)
lat_coarse,lon_coarse = latlon(5)
scale = np.linspace(0, .5, num=5).reshape(-1, 1) + np.linspace(0, .5, num=10)
f = sci.RectBivariateSpline(lat_coarse, lon_coarse, scale)
scale_interp = f(lat_em, lon_em)
with np.printoptions(precision=1, suppress=True, linewidth=9999):
print('original emission data:\n%s\n' % emission)
print('original scale data:\n%s\n' % scale)
print('interpolated scale data:\n%s\n' % scale_interp)
print('scaled emission data:\n%s\n' % (emission*scale_interp))
, который выводит:
original emission data:
[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
original scale data:
[[0. 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5]
[0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6]
[0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8]
[0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9]
[0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1. ]]
interpolated scale data:
[[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
[0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
[0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
[0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
[0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
[0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
[0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
[0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]
scaled emission data:
[[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
[0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
[0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
[0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
[0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
[0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
[0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
[0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]
Примечания
Методы интерполяции в scipy.interpolate
предполагают строгое увеличение x и y, поэтому вам нужно убедиться, что ваши emission
данные расположены в сетке так, что:
lat = np.arange(21600)*0.008333333 - 90
вместоиз:
lat = np.arange(21600)*(-0.008333333) + 90
как у вас выше.Вы можете перевернуть ваши emission
данные следующим образом:
emission = emission[::-1, :]