У меня есть вывод SQL в кадре данных pandas, который я хотел бы сначала преобразовать в извлечение .hyper Tableau, а затем опубликовать на сервере Tableau через Extract API.Когда я запускаю свой код (ниже), я получаю ошибку: объект 'module' не вызывается для tdefile = tableausdk.HyperExtract (outfilename).Я считаю, что мой код правильный, но, возможно, модули были установлены неправильно?Кто-нибудь видел эту ошибку?
print("Importing modules...")
import pandas as pd
import pyodbc
import re
import numpy as np
import cx_Oracle
import smtplib
import schedule
import time
import win32com.client as win32
import tableauserverclient as TSC
import os
import tableausdk
from pandleau import *
from tableausdk import *
from tableausdk.HyperExtract import *
print("Done importing modules.")
server = x
db = y
conn_sql = pyodbc.connect(#fill in your connection data)
### sql query - change from getdate() - 4 to TD# ##
sql_1 = """
select
* from test
"""
df = pd.read_sql_query(sql_1, conn_sql)
df.head()
def job(df, outfilename):
if os.path.isfile(outfilename):
os.remove(outfilename)
os.remove('DataExtract.log')
try:
tdefile = tableausdk.HyperExtract(outfilename)
except:
#os.remove(outfilename)
os.system('del ' + outfilename)
os.system('del DataExtract.log')
tdefile = tableausdk.HyperExtract(outfilename)
# define the table definition
tableDef = tableausdk.TableDefinition()
# create a list of column names
colnames = df.columns
# create a list of column types
coltypes = df.dtypes
# create a dict for the field maps
# Define type maps
# Caveat: I am not including all of the possibilities here
fieldMap = {
'float64' : tde.Types.Type.DOUBLE,
'float32' : tde.Types.Type.DOUBLE,
'int64' : tde.Types.Type.DOUBLE,
'int32' : tde.Types.Type.DOUBLE,
'object': tde.Types.Type.UNICODE_STRING,
'bool' : tde.Types.Type.BOOLEAN,
'datetime64[ns]': tde.Types.Type.DATE,
}
# for each column, add the appropriate info the Table Definition
for i in range(0, len(colnames)):
cname = colnames[i] #header of column
coltype = coltypes[i] #pandas data type of column
ctype = fieldMap.get(str(coltype)) #get integer field type in Tableau Speak
tableDef.addColumn(cname, ctype)
# add the data to the table
with tdefile as extract:
table = extract.addTable("Extract", tableDef)
for r in range(0, df.shape[0]):
row = tde.Row(tableDef)
for c in range(0, len(coltypes)):
if df.iloc[r,c] is None:
row.setNull(c)
elif str(coltypes[c]) in ('float64', 'float32', 'int64', 'int32'):
try:
row.setDouble(c, df.iloc[r,c])
except:
row.setNull(c)
elif str(coltypes[c]) == 'object':
try:
row.setString(c, df.iloc[r,c])
except:
row.setNull(c)
elif str(coltypes[c]) == 'bool':
row.setBoolean(c, df.iloc[r,c])
elif str(coltypes[c]) == 'datetime64[ns]':
try:
row.setDate(c, df.iloc[r,c].year, df.iloc[r,c].month, df.iloc[r,c].day )
except:
row.setNull
else:
row.setNull(c)
# insert the row
table.insert(row)
tdefile.close()
#df_tableau = pandleau(df_1)
#df_tableau.set_spatial('SpatialDest', indicator=True)
#df_tableau.to_tableau('test.hyper', add_index=False)
job(df, 'test_1.hyper')