Scikit-learn не допускает таких ограничений на коэффициенты.
Но вы можете наложить любые ограничения на коэффициенты и оптимизировать потери с помощью координаты спуска , если вы реализуете свою собственную оценку .В случае без ограничений спуск координат дает тот же результат, что и OLS, за разумное количество итераций.
Я написал класс, который устанавливает верхнюю и нижнюю границы для коэффициентов LinearRegression.Вы можете расширить его, чтобы использовать штраф Риджа или Эвел Лассо, если хотите:
from sklearn.linear_model.base import LinearModel
from sklearn.base import RegressorMixin
from sklearn.utils import check_X_y
import numpy as np
class ConstrainedLinearRegression(LinearModel, RegressorMixin):
def __init__(self, fit_intercept=True, normalize=False, copy_X=True, nonnegative=False, tol=1e-15):
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.nonnegative = nonnegative
self.tol = tol
def fit(self, X, y, min_coef=None, max_coef=None):
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], y_numeric=True, multi_output=False)
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X, y, fit_intercept=self.fit_intercept, normalize=self.normalize, copy=self.copy_X)
self.min_coef_ = min_coef if min_coef is not None else np.repeat(-np.inf, X.shape[1])
self.max_coef_ = max_coef if max_coef is not None else np.repeat(np.inf, X.shape[1])
if self.nonnegative:
self.min_coef_ = np.clip(self.min_coef_, 0, None)
beta = np.zeros(X.shape[1]).astype(float)
prev_beta = beta + 1
hessian = np.dot(X.transpose(), X)
while not (np.abs(prev_beta - beta)<self.tol).all():
prev_beta = beta.copy()
for i in range(len(beta)):
grad = np.dot(np.dot(X,beta) - y, X)
beta[i] = np.minimum(self.max_coef_[i],
np.maximum(self.min_coef_[i],
beta[i]-grad[i] / hessian[i,i]))
self.coef_ = beta
self._set_intercept(X_offset, y_offset, X_scale)
return self
Этот класс можно использовать, например, для того, чтобы все коэффициенты были неотрицательными
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
X, y = load_boston(return_X_y=True)
model = ConstrainedLinearRegression(nonnegative=True)
model.fit(X, y)
print(model.intercept_)
print(model.coef_)
Этопроизводит вывод как
-36.99292986145538
[0. 0.05286515 0. 4.12512386 0. 8.04017956
0. 0. 0. 0. 0. 0.02273805
0. ]
Вы можете видеть, что большинство коэффициентов равны нулю.Обычная LinearModel сделала бы их отрицательными:
model = LinearRegression()
model.fit(X, y)
print(model.intercept_)
print(model.coef_)
, который вернул бы вас
36.49110328036191
[-1.07170557e-01 4.63952195e-02 2.08602395e-02 2.68856140e+00
-1.77957587e+01 3.80475246e+00 7.51061703e-04 -1.47575880e+00
3.05655038e-01 -1.23293463e-02 -9.53463555e-01 9.39251272e-03
-5.25466633e-01]
Вы также можете наложить произвольные границы для любых выбранных вами коэффициентов - это то, что вы просили.Например, в этой настройке
model = ConstrainedLinearRegression()
min_coef = np.repeat(-np.inf, X.shape[1])
min_coef[0] = 0
min_coef[4] = -1
max_coef = np.repeat(4, X.shape[1])
max_coef[3] = 2
model.fit(X, y, max_coef=max_coef, min_coef=min_coef)
print(model.intercept_)
print(model.coef_)
вы получите вывод
24.060175576410515
[ 0. 0.04504673 -0.0354073 2. -1. 4.
-0.01343263 -1.17231216 0.2183103 -0.01375266 -0.7747823 0.01122374
-0.56678676]