Я посмотрел на Stack Overflow, чтобы найти решение связанной проблемы, но кажется, что это довольно уникальное решение.Для контекста мне нужно обновлять учетные данные безопасности AWS каждый час из-за процедур компании, и я изо всех сил пытаюсь добавить новые обновленные учетные данные безопасности для запуска.В первый час все работает нормально (я могу получить доступ и читать таблицы из s3 и т. Д.), Но я не могу успешно изменить свои учетные данные aws после истечения первого часа и обновления учетных данных.
Как только я обновляю свои учетные данные aws, вот код, который я использую для обновления spark, чтобы заставить их использовать новые учетные данные aws:
sc = spark.sparkContext
def getAWSKeys(profile):
awsCreds = {}
Config = ConfigParser.ConfigParser()
Config.read(os.path.join(os.getenv("HOME"), '.aws', 'credentials'))
if profile in Config.sections():
awsCreds["aws_access_key_id"] = Config.get(
profile, "aws_access_key_id")
awsCreds["aws_secret_access_key"] = Config.get(
profile, "aws_secret_access_key")
awsCreds["aws_session_token"] = Config.get(
profile, "aws_session_token")
return awsCreds
awsKeys = getAWSKeys(profile)
sc._jsc.hadoopConfiguration().set("fs.s3.awsAccessKeyId",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3.awsSecretAccessKey",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3.session.token",
awsKeys["aws_session_token"])
sc._jsc.hadoopConfiguration().set("fs.s3.enableServerSideEncryption", "true")
sc._jsc.hadoopConfiguration().set("fs.s3.access.key",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3.secret.key",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3.endpoint",
"s3.us-east-1.amazonaws.com")
sc._jsc.hadoopConfiguration().set("fs.s3a.awsAccessKeyId",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3a.awsSecretAccessKey",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3a.session.token",
awsKeys["aws_session_token"])
sc._jsc.hadoopConfiguration().set("fs.s3a.enableServerSideEncryption", "true")
sc._jsc.hadoopConfiguration().set("fs.s3a.access.key",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3a.secret.key",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3a.endpoint",
"s3.us-east-1.amazonaws.com")
sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3n.session.token",
awsKeys["aws_session_token"])
sc._jsc.hadoopConfiguration().set("fs.s3n.enableServerSideEncryption", "true")
sc._jsc.hadoopConfiguration().set("fs.s3n.access.key",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3n.secret.key",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3n.endpoint",
"s3.us-east-1.amazonaws.com")
sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true")
sc.setSystemProperty("com.amazonaws.services.s3n.enableV4", "true")
sc.setSystemProperty("com.amazonaws.services.s3a.enableV4", "true")
# sc._jsc.hadoopConfiguration().set("fs.s3.aws.credentials.provider",
# "org.apache.hadoop.fs.s3.TemporaryAWSCredentialsProvider")
os.environ['AWS_ACCESS_KEY_ID'] = awsKeys["aws_access_key_id"]
os.environ['AWS_SECRET_ACCESS_KEY'] = awsKeys["aws_secret_access_key"]
os.environ['AWS_SESSION_TOKEN'] = awsKeys["aws_session_token"]
Я пытался быть исчерпывающимв моем подходе, но, к сожалению, ничего не получилось.Я получаю сообщение об ошибке:
Py4JJavaError Traceback (most recent call last)
<ipython-input-57-674174eca978> in <module>()
3 table = (
4 spark.read.option("delimiter", "|")
----> 5 .csv(f"s3n://{s3_path}/{file1}", header = True, inferSchema=True)
6 .select("col1", "col2", "col3", "col4")
7 )
/usr/lib/spark/python/pyspark/sql/readwriter.py in csv(self, path, schema, sep, encoding, quote, escape, comment, header, inferSchema, ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace, nullValue, nanValue, positiveInf, negativeInf, dateFormat, timestampFormat, maxColumns, maxCharsPerColumn, maxMalformedLogPerPartition, mode, columnNameOfCorruptRecord, multiLine)
408 if isinstance(path, basestring):
409 path = [path]
--> 410 return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
411
412 @since(1.5)
/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling o12923.csv.
: com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.model.AmazonS3Exception: Bad Request (Service: Amazon S3; Status Code: 400; Error Code: 400 Bad Request; Request ID: 9A4F6DDEA3BD8AA6), S3 Extended Request ID: xg9ZiPjfV3h4rGgs5emsUiWl8xQdv0OMhK/91qdAs/iIvapWgIlWh9m1qLTGj3ODFM9MtEnuueg=
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleErrorResponse(AmazonHttpClient.java:1588)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1258)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1030)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:742)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:716)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:699)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:667)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:649)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:513)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4169)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4116)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:1237)
at com.amazon.ws.emr.hadoop.fs.s3.lite.call.GetObjectMetadataCall.perform(GetObjectMetadataCall.java:24)
at com.amazon.ws.emr.hadoop.fs.s3.lite.call.GetObjectMetadataCall.perform(GetObjectMetadataCall.java:10)
at com.amazon.ws.emr.hadoop.fs.s3.lite.executor.GlobalS3Executor.execute(GlobalS3Executor.java:82)
at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.invoke(AmazonS3LiteClient.java:176)
at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.getObjectMetadata(AmazonS3LiteClient.java:94)
at com.amazon.ws.emr.hadoop.fs.s3.lite.AbstractAmazonS3Lite.getObjectMetadata(AbstractAmazonS3Lite.java:39)
at com.amazon.ws.emr.hadoop.fs.s3n.Jets3tNativeFileSystemStore.retrieveMetadata(Jets3tNativeFileSystemStore.java:211)
at sun.reflect.GeneratedMethodAccessor42.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy36.retrieveMetadata(Unknown Source)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.getFileStatus(S3NativeFileSystem.java:768)
at org.apache.hadoop.fs.FileSystem.exists(FileSystem.java:1430)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.exists(EmrFileSystem.java:311)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:359)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:348)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:344)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:348)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:533)
at sun.reflect.GeneratedMethodAccessor118.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Повторяю, все отлично работает в течение первого часа, но я получаю ошибку 400 Bad Request при обновлении учетных данных aws.Я пытался добавить эти новые учетные данные aws для запуска, но ничего из того, что я пробовал, не помогло.