С этим кадром данных:
df = spark.createDataFrame(
[
(1,2),
(2,3),
],
["foo","bar"]
)
df.show()
+---+---+
|foo|bar|
+---+---+
| 1| 2|
| 2| 3|
+---+---+
цикл for
, вероятно, является самым простым и более естественным решением.
from pyspark.sql import functions as F
for col in df.columns:
df = df.withColumn(
col,
F.col(col).cast("double")
)
df.show()
+---+---+
|foo|bar|
+---+---+
|1.0|2.0|
|2.0|3.0|
+---+---+
Конечно, вы также можете использовать понимание Python:
df.select(
*(
F.col(col).cast("double").alias(col)
for col
in df.columns
)
).show()
+---+---+
|foo|bar|
+---+---+
|1.0|2.0|
|2.0|3.0|
+---+---+
Если у вас много столбцов, второе решение немного лучше.